Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1000635197600381118310 ~2002
1000635599200127119910 ~2001
1000663799200132759910 ~2001
1000696271200139254310 ~2001
10007167678005734136111 ~2005
1000718363200143672710 ~2001
1000730183200146036710 ~2001
1000734659200146931910 ~2001
10007462171601193947311 ~2004
10007528471000752847111 ~2003
1000867319200173463910 ~2001
1000908599200181719910 ~2001
1000918739200183747910 ~2001
1000953677800762941710 ~2003
1000960931800768744910 ~2003
1000974479200194895910 ~2001
10010046911801808443911 ~2004
10010217311001021731111 ~2003
1001048813600629287910 ~2002
1001054459200210891910 ~2001
1001085311200217062310 ~2001
100114606712814669657712 ~2006
1001173391200234678310 ~2001
1001185931200237186310 ~2001
1001213639200242727910 ~2001
Exponent Prime Factor Digits Year
1001213879200242775910 ~2001
10013296133204254761711 ~2004
1001352323200270464710 ~2001
10014933911001493391111 ~2003
1001494031200298806310 ~2001
10015593232604054239911 ~2004
1001567417600940450310 ~2002
1001568539200313707910 ~2001
10016145891402260424711 ~2003
1001622491200324498310 ~2001
10016268771402277627911 ~2003
10016274116610740912711 ~2005
10016392511001639251111 ~2003
1001640113600984067910 ~2002
1001644103200328820710 ~2001
10016493311802968795911 ~2004
1001692019200338403910 ~2001
1001754059200350811910 ~2001
1001795243200359048710 ~2001
1001821763200364352710 ~2001
10018801511001880151111 ~2003
1001887871200377574310 ~2001
1001896559200379311910 ~2001
1001905451200381090310 ~2001
1001929499200385899910 ~2001
Exponent Prime Factor Digits Year
1001930129801544103310 ~2003
1001933111200386622310 ~2001
1001947211200389442310 ~2001
1001954183200390836710 ~2001
1002013679200402735910 ~2001
1002047639200409527910 ~2001
1002058763200411752710 ~2001
1002059893601235935910 ~2002
1002067361801653888910 ~2003
1002076763200415352710 ~2001
1002110111200422022310 ~2001
1002150203200430040710 ~2001
1002150899200430179910 ~2001
1002162431200432486310 ~2001
1002174143200434828710 ~2001
1002215099200443019910 ~2001
1002221219200444243910 ~2001
1002233483200446696710 ~2001
1002233891200446778310 ~2001
10022452672605837694311 ~2004
1002272123200454424710 ~2001
1002278603200455720710 ~2001
1002295559200459111910 ~2001
1002324203200464840710 ~2001
10023355491403269768711 ~2003
Exponent Prime Factor Digits Year
1002339179200467835910 ~2001
10023460731403284502311 ~2003
1002548221601528932710 ~2002
1002563543200512708710 ~2001
1002567479200513495910 ~2001
1002591731200518346310 ~2001
1002620687802096549710 ~2003
1002670301601602180710 ~2002
1002698051200539610310 ~2001
1002723497601634098310 ~2002
10027382411604381185711 ~2004
1002804521601682712710 ~2002
1002833483200566696710 ~2001
10028405831002840583111 ~2003
1002865091200573018310 ~2001
1002884339200576867910 ~2001
1002911771200582354310 ~2001
1002962221601777332710 ~2002
1002967799200593559910 ~2001
10029766072407143856911 ~2004
1002998497601799098310 ~2002
1003018439802414751310 ~2003
10030230591805441506311 ~2004
1003066931200613386310 ~2001
1003070423200614084710 ~2001
Home
5.157.210 digits
e-mail
25-11-02