Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1803256271360651254310 ~2003
1803294191360658838310 ~2003
1803318683360663736710 ~2003
1803384683360676936710 ~2003
1803425471360685094310 ~2003
18034914913246284683911 ~2006
1803558131360711626310 ~2003
1803672011360734402310 ~2003
1803689099360737819910 ~2003
1803689939360737987910 ~2003
1803696263360739252710 ~2003
1803721919360744383910 ~2003
18037226998657868955311 ~2007
18037516132525252258311 ~2005
1803755363360751072710 ~2003
1803866231360773246310 ~2003
1803878231360775646310 ~2003
18038790711443103256911 ~2005
18039965172886394427311 ~2005
18041089791443287183311 ~2005
18041710031804171003111 ~2005
1804226003360845200710 ~2003
1804375763360875152710 ~2003
1804451639360890327910 ~2003
1804473323360894664710 ~2003
Exponent Prime Factor Digits Year
1804482539360896507910 ~2003
1804510343360902068710 ~2003
1804581923360916384710 ~2003
1804585511360917102310 ~2003
1804684943360936988710 ~2003
18046854131082811247911 ~2004
1804699943360939988710 ~2003
180476701111911462272712 ~2007
18049296971082957818311 ~2004
1804959239360991847910 ~2003
18049660491443972839311 ~2005
1805035091361007018310 ~2003
18050482611444038608911 ~2005
1805090051361018010310 ~2003
1805190059361038011910 ~2003
1805236871361047374310 ~2003
1805251691361050338310 ~2003
18053785011444302800911 ~2005
1805510303361102060710 ~2003
1805516183361103236710 ~2003
1805541863361108372710 ~2003
18057062473250271244711 ~2006
1805729531361145906310 ~2003
1805741219361148243910 ~2003
18059250011083555000711 ~2004
Exponent Prime Factor Digits Year
18059363811444749104911 ~2005
1805963051361192610310 ~2003
1805970779361194155910 ~2003
18061407591444912607311 ~2005
1806165191361233038310 ~2003
1806214379361242875910 ~2003
18062513531083750811911 ~2004
1806271283361254256710 ~2003
1806314903361262980710 ~2003
1806616043361323208710 ~2003
1806741983361348396710 ~2003
1806770891361354178310 ~2003
1806971651361394330310 ~2003
18071410331084284619911 ~2004
1807164839361432967910 ~2003
1807267139361453427910 ~2003
1807279499361455899910 ~2003
1807350179361470035910 ~2003
18074551372530437191911 ~2005
18075317934338076303311 ~2006
1807718651361543730310 ~2003
18077591811446207344911 ~2005
1807777259361555451910 ~2003
1807881143361576228710 ~2003
18081066172531349263911 ~2005
Exponent Prime Factor Digits Year
1808115839361623167910 ~2003
1808164199361632839910 ~2003
18081707897232683156111 ~2006
18081942172531471903911 ~2005
1808226659361645331910 ~2003
1808229443361645888710 ~2003
18084046211085042772711 ~2004
18086014971085160898311 ~2004
1808605523361721104710 ~2003
18087116771085227006311 ~2004
18087498371085249902311 ~2004
18087605171085256310311 ~2004
18087932991447034639311 ~2005
18088100271447048021711 ~2005
1808885219361777043910 ~2003
18088992771447119421711 ~2005
1808918183361783636710 ~2003
18089458135788626601711 ~2006
1809054083361810816710 ~2003
18090549531085432971911 ~2004
1809071399361814279910 ~2003
1809220103361844020710 ~2003
180945245918818305573712 ~2008
18095444331085726659911 ~2004
1809647699361929539910 ~2003
Home
4.724.182 digits
e-mail
25-04-13