Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17168627873090353016711 ~2005
1717004123343400824710 ~2003
171700461715109640629712 ~2007
17171612231717161223111 ~2005
17171617371030297042311 ~2004
17171893011030313580711 ~2004
17172521836869008732111 ~2006
1717281311343456262310 ~2003
17174884031717488403111 ~2005
17175050511374004040911 ~2005
1717575551343515110310 ~2003
17175761531030545691911 ~2004
1717609163343521832710 ~2003
1717653863343530772710 ~2003
1717787243343557448710 ~2003
1717849799343569959910 ~2003
17178924891374313991311 ~2005
1717933103343586620710 ~2003
1717934483343586896710 ~2003
1718014139343602827910 ~2003
1718025971343605194310 ~2003
1718027219343605443910 ~2003
1718062799343612559910 ~2003
1718087159343617431910 ~2003
1718102843343620568710 ~2003
Exponent Prime Factor Digits Year
1718103239343620647910 ~2003
1718121599343624319910 ~2003
17181970997216427815911 ~2006
1718318279343663655910 ~2003
17183618332405706566311 ~2005
1718498471343699694310 ~2003
1718553839343710767910 ~2003
1718647379343729475910 ~2003
17187055571031223334311 ~2004
1718775323343755064710 ~2003
1718814059343762811910 ~2003
17188324972406365495911 ~2005
1718838623343767724710 ~2003
1718854979343770995910 ~2003
17189336475844374399911 ~2006
17190041211031402472711 ~2004
17190094036876037612111 ~2006
17192083911375366712911 ~2005
1719227423343845484710 ~2003
17192825811375426064911 ~2005
1719313811343862762310 ~2003
1719320951343864190310 ~2003
1719331571343866314310 ~2003
17193631975158089591111 ~2006
1719369083343873816710 ~2003
Exponent Prime Factor Digits Year
1719431783343886356710 ~2003
17194824971031689498311 ~2004
1719491723343898344710 ~2003
1719527591343905518310 ~2003
17195319731031719183911 ~2004
1719544979343908995910 ~2003
17195830811031749848711 ~2004
1719596243343919248710 ~2003
1719807731343961546310 ~2003
17198681597223446267911 ~2006
17199834073095970132711 ~2005
17200887313096159715911 ~2005
1720095959344019191910 ~2003
17201214771032072886311 ~2004
172012321747819425432712 ~2008
1720135139344027027910 ~2003
17202692091376215367311 ~2005
1720291019344058203910 ~2003
1720341923344068384710 ~2003
1720473719344094743910 ~2003
17204874531032292471911 ~2004
1720568039344113607910 ~2003
1720601231344120246310 ~2003
17206568232753050916911 ~2005
1720669319344133863910 ~2003
Exponent Prime Factor Digits Year
1720813823344162764710 ~2003
17208479511376678360911 ~2005
17209095174130182840911 ~2006
1720910963344182192710 ~2003
1720994123344198824710 ~2003
17210164393097829590311 ~2005
1721025083344205016710 ~2003
17211274271721127427111 ~2005
17211375431721137543111 ~2005
17211723711376937896911 ~2005
1721189903344237980710 ~2003
1721208539344241707910 ~2003
17212384271721238427111 ~2005
1721239259344247851910 ~2003
172124287923753151730312 ~2008
1721247779344249555910 ~2003
17212927195508136700911 ~2006
1721298083344259616710 ~2003
1721346719344269343910 ~2003
1721359151344271830310 ~2003
1721370083344274016710 ~2003
1721371103344274220710 ~2003
17214308713098575567911 ~2005
17214477971032868678311 ~2004
1721451419344290283910 ~2003
Home
4.724.182 digits
e-mail
25-04-13