Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1175502683235100536710 ~2002
1175505839235101167910 ~2002
1175511479235102295910 ~2002
1175577131235115426310 ~2002
11756156632821477591311 ~2004
1175675243235135048710 ~2002
11756981273056815130311 ~2005
1175705933705423559910 ~2003
117573389915049393907312 ~2006
117574045913403441232712 ~2006
1175765219235153043910 ~2002
1175766023235153204710 ~2002
1175806601705483960710 ~2003
1175819831235163966310 ~2002
1175925671235185134310 ~2002
1175959871235191974310 ~2002
1175993531235198706310 ~2002
1176000323235200064710 ~2002
1176007271235201454310 ~2002
1176008759235201751910 ~2002
1176011281705606768710 ~2003
1176033923235206784710 ~2002
1176044231235208846310 ~2002
11760490792116888342311 ~2004
1176115679235223135910 ~2002
Exponent Prime Factor Digits Year
1176124637940899709710 ~2003
1176187583235237516710 ~2002
1176208343235241668710 ~2002
1176228239235245647910 ~2002
1176230621705738372710 ~2003
11762479871176247987111 ~2004
1176251099235250219910 ~2002
1176256643235251328710 ~2002
1176293759235258751910 ~2002
1176298811235259762310 ~2002
11763110513058408732711 ~2005
1176354059235270811910 ~2002
1176367607941094085710 ~2003
1176402761941122208910 ~2003
1176420911235284182310 ~2002
1176471911235294382310 ~2002
1176491753705895051910 ~2003
1176512783235302556710 ~2002
1176529331235305866310 ~2002
1176552173705931303910 ~2003
1176570431235314086310 ~2002
1176582131235316426310 ~2002
1176626303235325260710 ~2002
1176691391235338278310 ~2002
1176700177706020106310 ~2003
Exponent Prime Factor Digits Year
1176700463235340092710 ~2002
1176719171235343834310 ~2002
1176849857941479885710 ~2003
1176883751235376750310 ~2002
1176902501706141500710 ~2003
1176912083235382416710 ~2002
1176925439235385087910 ~2002
1176979439235395887910 ~2002
1177002719235400543910 ~2002
11770052272118609408711 ~2004
1177020203235404040710 ~2002
1177026793706216075910 ~2003
11770770671883323307311 ~2004
1177084691235416938310 ~2002
1177112399235422479910 ~2002
1177196771235439354310 ~2002
1177253177706351906310 ~2003
11772626231177262623111 ~2004
1177307617706384570310 ~2003
1177328281706396968710 ~2003
1177337723235467544710 ~2002
1177424723235484944710 ~2002
1177449863235489972710 ~2002
11774694071883951051311 ~2004
1177509251235501850310 ~2002
Exponent Prime Factor Digits Year
11775266294710106516111 ~2005
1177543033706525819910 ~2003
1177558883235511776710 ~2002
1177568543235513708710 ~2002
11775920696358997172711 ~2005
1177607351235521470310 ~2002
11776163392119709410311 ~2004
1177657931235531586310 ~2002
1177682459235536491910 ~2002
1177698059235539611910 ~2002
1177698311235539662310 ~2002
11777106431177710643111 ~2004
1177716983235543396710 ~2002
1177719311235543862310 ~2002
1177721939235544387910 ~2002
1177728911235545782310 ~2002
1177734773706640863910 ~2003
1177759343235551868710 ~2002
1177766939235553387910 ~2002
11778199132826767791311 ~2004
1177841213706704727910 ~2003
1177849859235569971910 ~2002
1177856591235571318310 ~2002
1177866149942292919310 ~2003
11778751331884600212911 ~2004
Home
4.903.097 digits
e-mail
25-07-08