Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
795140399159028079910 ~2001
795155723159031144710 ~2001
795161099159032219910 ~2001
795167699159033539910 ~2001
795207659159041531910 ~2001
7952285096361828072111 ~2004
795240311159048062310 ~2001
795286949636229559310 ~2002
795340739159068147910 ~2001
795346193477207715910 ~2002
7953497172386049151111 ~2003
795353939159070787910 ~2001
7953625931749797704711 ~2003
7953757511431676351911 ~2003
795435131159087026310 ~2001
795525323159105064710 ~2001
795530591159106118310 ~2001
795539999159107999910 ~2001
795570719159114143910 ~2001
795586199159117239910 ~2001
795587423159117484710 ~2001
795588971159117794310 ~2001
795611711159122342310 ~2001
795621251159124250310 ~2001
795637319159127463910 ~2001
Exponent Prime Factor Digits Year
7956838973023598808711 ~2004
795692483159138496710 ~2001
795730807795730807110 ~2002
795767891159153578310 ~2001
795768739795768739110 ~2002
795785051636628040910 ~2002
795822197636657757710 ~2002
795843131159168626310 ~2001
795861119159172223910 ~2001
795870431159174086310 ~2001
795894929636715943310 ~2002
795967499159193499910 ~2001
795978119159195623910 ~2001
795985241477591144710 ~2002
795986003159197200710 ~2001
795988217636790573710 ~2002
796007137477604282310 ~2002
796011803159202360710 ~2001
796052303159210460710 ~2001
796058891159211778310 ~2001
796124471159224894310 ~2001
796125131159225026310 ~2001
7961394177642938403311 ~2005
7961533871433076096711 ~2003
796170421477702252710 ~2002
Exponent Prime Factor Digits Year
796172159159234431910 ~2001
796176071159235214310 ~2001
796184639159236927910 ~2001
796208111159241622310 ~2001
796227671159245534310 ~2001
796229639636983711310 ~2002
796265843159253168710 ~2001
796269923159253984710 ~2001
7962761812388828543111 ~2003
796276511159255302310 ~2001
796283903159256780710 ~2001
796284323159256864710 ~2001
796294319159258863910 ~2001
796295099159259019910 ~2001
796295231159259046310 ~2001
796305677477783406310 ~2002
796319759159263951910 ~2001
796337771159267554310 ~2001
796356299159271259910 ~2001
796403759159280751910 ~2001
7964099273822767649711 ~2004
796418879159283775910 ~2001
796425923159285184710 ~2001
796464299159292859910 ~2001
7966086231911860695311 ~2003
Exponent Prime Factor Digits Year
796648799159329759910 ~2001
796679951159335990310 ~2001
796682063159336412710 ~2001
796691039159338207910 ~2001
796708499159341699910 ~2001
796737743159347548710 ~2001
796755611159351122310 ~2001
796783451159356690310 ~2001
7967904971912297192911 ~2003
796803239159360647910 ~2001
796805231159361046310 ~2001
796815317637452253710 ~2002
796869791159373958310 ~2001
796878311159375662310 ~2001
796883051159376610310 ~2001
796898159159379631910 ~2001
7969229332550153385711 ~2003
796931711159386342310 ~2001
796945283159389056710 ~2001
797001197478200718310 ~2002
797025893478215535910 ~2002
797035331159407066310 ~2001
797038631159407726310 ~2001
797065259159413051910 ~2001
797084339159416867910 ~2001
Home
5.157.210 digits
e-mail
25-11-02