Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1098532619219706523910 ~2002
1098533603219706720710 ~2002
10985389571757662331311 ~2004
1098572339219714467910 ~2002
1098605663219721132710 ~2002
1098638041659182824710 ~2003
1098716219219743243910 ~2002
1098736091219747218310 ~2002
1098745801659247480710 ~2003
1098765443219753088710 ~2002
1098797977659278786310 ~2003
1098823259219764651910 ~2002
1098875549879100439310 ~2003
1098883679219776735910 ~2002
1098887291219777458310 ~2002
1098900497659340298310 ~2003
1098932557659359534310 ~2003
1098950123219790024710 ~2002
1098954911219790982310 ~2002
1098962531219792506310 ~2002
1098968291219793658310 ~2002
1099016339219803267910 ~2002
1099048319219809663910 ~2002
1099071419219814283910 ~2002
1099093217659455930310 ~2003
Exponent Prime Factor Digits Year
1099110563219822112710 ~2002
1099112159219822431910 ~2002
1099161263219832252710 ~2002
1099172831219834566310 ~2002
1099194611219838922310 ~2002
1099264031219852806310 ~2002
1099267679219853535910 ~2002
1099267751219853550310 ~2002
1099338887879471109710 ~2003
1099382939219876587910 ~2002
1099385159219877031910 ~2002
1099410479219882095910 ~2002
10994112071099411207111 ~2003
1099428839219885767910 ~2002
1099442213659665327910 ~2003
1099513799219902759910 ~2002
1099532729879626183310 ~2003
1099545563219909112710 ~2002
1099587299219917459910 ~2002
1099593629879674903310 ~2003
1099654499219930899910 ~2002
1099656253659793751910 ~2003
1099703219219940643910 ~2002
1099731551219946310310 ~2002
1099750237659850142310 ~2003
Exponent Prime Factor Digits Year
1099755599219951119910 ~2002
1099847579219969515910 ~2002
1099851671219970334310 ~2002
1099880317659928190310 ~2003
1099960973659976583910 ~2003
1099989503219997900710 ~2002
1100044031220008806310 ~2002
1100060771220012154310 ~2002
1100069843220013968710 ~2002
1100094251220018850310 ~2002
1100099219220019843910 ~2002
1100174819220034963910 ~2002
1100346491220069298310 ~2002
11003545571760567291311 ~2004
1100361323220072264710 ~2002
1100413837660248302310 ~2003
1100463179220092635910 ~2002
1100521601660312960710 ~2003
1100566679220113335910 ~2002
1100593573660356143910 ~2003
1100608501660365100710 ~2003
1100635093660381055910 ~2003
1100650871220130174310 ~2002
1100652023220130404710 ~2002
1100696351220139270310 ~2002
Exponent Prime Factor Digits Year
1100701799220140359910 ~2002
1100708183220141636710 ~2002
1100805143220161028710 ~2002
11008503431100850343111 ~2003
1100953957660572374310 ~2003
11009680815284646788911 ~2005
1100971499220194299910 ~2002
1100974151220194830310 ~2002
1101008063220201612710 ~2002
1101014459220202891910 ~2002
1101026483220205296710 ~2002
1101054299220210859910 ~2002
1101072443220214488710 ~2002
1101096131220219226310 ~2002
1101099479880879583310 ~2003
1101135023220227004710 ~2002
1101154913660692947910 ~2003
1101159131220231826310 ~2002
1101214451220242890310 ~2002
11012404631101240463111 ~2003
1101258461660755076710 ~2003
1101261779220252355910 ~2002
1101268631220253726310 ~2002
1101319873660791923910 ~2003
11013318433744528266311 ~2005
Home
4.903.097 digits
e-mail
25-07-08