Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1288402463257680492710 ~2002
1288427531257685506310 ~2002
1288475759257695151910 ~2002
12884803131803872438311 ~2004
1288484231257696846310 ~2002
1288488563257697712710 ~2002
1288507931257701586310 ~2002
1288541701773125020710 ~2003
1288580291257716058310 ~2002
1288585559257717111910 ~2002
1288618553773171131910 ~2003
1288648199257729639910 ~2002
1288808159257761631910 ~2002
1288824637773294782310 ~2003
1288890481773334288710 ~2003
1288930763257786152710 ~2002
12889513816186966628911 ~2006
1288972523257794504710 ~2002
1288999703257799940710 ~2002
12890059011031204720911 ~2004
1289043179257808635910 ~2002
1289071241773442744710 ~2003
1289072819257814563910 ~2002
1289075279257815055910 ~2002
1289097193773458315910 ~2003
Exponent Prime Factor Digits Year
1289123639257824727910 ~2002
1289192819257838563910 ~2002
12892641431289264143111 ~2004
1289294663257858932710 ~2002
1289318603257863720710 ~2002
1289329703257865940710 ~2002
1289471591257894318310 ~2002
1289506973773704183910 ~2003
1289515163257903032710 ~2002
1289516411257903282310 ~2002
1289552111257910422310 ~2002
1289564183257912836710 ~2002
1289578943257915788710 ~2002
1289621639257924327910 ~2002
1289644991257928998310 ~2002
1289654917773792950310 ~2003
1289693033773815819910 ~2003
1289693753773816251910 ~2003
1289793971257958794310 ~2002
1289888123257977624710 ~2002
1289902199257980439910 ~2002
1289912303257982460710 ~2002
1289940299257988059910 ~2002
1290040211258008042310 ~2002
1290058859258011771910 ~2002
Exponent Prime Factor Digits Year
12900806991032064559311 ~2004
1290141221774084732710 ~2003
1290144539258028907910 ~2002
1290149543258029908710 ~2002
12901633099031143163111 ~2006
1290174971258034994310 ~2002
1290178691258035738310 ~2002
12902614212064418273711 ~2004
1290275663258055132710 ~2002
1290336959258067391910 ~2002
1290341771258068354310 ~2002
12903818873096916528911 ~2005
1290409511258081902310 ~2002
1290501119258100223910 ~2002
12905784732064925556911 ~2004
1290632459258126491910 ~2002
1290647843258129568710 ~2002
12906543071290654307111 ~2004
1290654863258130972710 ~2002
12906642732839461400711 ~2005
1290667751258133550310 ~2002
1290676319258135263910 ~2002
12907205693097729365711 ~2005
1290722651258144530310 ~2002
1290780119258156023910 ~2002
Exponent Prime Factor Digits Year
129082090315489850836112 ~2007
1290827819258165563910 ~2002
12909172493098201397711 ~2005
12909418491032753479311 ~2004
1290942011258188402310 ~2002
1290966311258193262310 ~2002
1291024079258204815910 ~2002
1291040711258208142310 ~2002
12910550391032844031311 ~2004
1291159739258231947910 ~2002
1291191383258238276710 ~2002
1291227011258245402310 ~2002
1291274723258254944710 ~2002
1291427411258285482310 ~2002
1291432993774859795910 ~2003
1291510079258302015910 ~2002
1291555703258311140710 ~2002
12915777732841471100711 ~2005
12915923276457961635111 ~2006
1291628003258325600710 ~2002
12916371431291637143111 ~2004
1291669031258333806310 ~2002
1291701839258340367910 ~2002
1291730123258346024710 ~2002
1291774697775064818310 ~2003
Home
4.724.182 digits
e-mail
25-04-13