Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1279212023255842404710 ~2002
1279216979255843395910 ~2002
1279254611255850922310 ~2002
12792846411023427712911 ~2004
1279311179255862235910 ~2002
1279402739255880547910 ~2002
1279537859255907571910 ~2002
12796083891791451744711 ~2004
12796111196142133371311 ~2006
1279615919255923183910 ~2002
1279616951255923390310 ~2002
1279637939255927587910 ~2002
1279682051255936410310 ~2002
12796897913327193456711 ~2005
1279690733767814439910 ~2003
1279763123255952624710 ~2002
1279787471255957494310 ~2002
12797888232047662116911 ~2004
1279801223255960244710 ~2002
1279813103255962620710 ~2002
1279813739255962747910 ~2002
1279828139255965627910 ~2002
12798399891023871991311 ~2004
12798442573071626216911 ~2005
1279881803255976360710 ~2002
Exponent Prime Factor Digits Year
12799052511023924200911 ~2004
1279933861767960316710 ~2003
1279968923255993784710 ~2002
1279997399255999479910 ~2002
12800056971024004557711 ~2004
1280048879256009775910 ~2002
1280107859256021571910 ~2002
12801228891024098311311 ~2004
1280141363256028272710 ~2002
1280197739256039547910 ~2002
1280231279256046255910 ~2002
12802967934096949737711 ~2005
1280344201768206520710 ~2003
12803767911024301432911 ~2004
1280403731256080746310 ~2002
1280409413768245647910 ~2003
1280413523256082704710 ~2002
1280443091256088618310 ~2002
1280489471256097894310 ~2002
12806108391024488671311 ~2004
1280611919256122383910 ~2002
12806757233073621735311 ~2005
1280694071256138814310 ~2002
1280772659256154531910 ~2002
1280835299256167059910 ~2002
Exponent Prime Factor Digits Year
1280838683256167736710 ~2002
1280862983256172596710 ~2002
1280874599256174919910 ~2002
12808754111280875411111 ~2004
1280930219256186043910 ~2002
1280947163256189432710 ~2002
1280955359256191071910 ~2002
1280962031256192406310 ~2002
1281047759256209551910 ~2002
12810533511024842680911 ~2004
1281165419256233083910 ~2002
1281236279256247255910 ~2002
1281258383256251676710 ~2002
12812642513331287052711 ~2005
12812690512306284291911 ~2004
1281283043256256608710 ~2002
12813043011025043440911 ~2004
1281380459256276091910 ~2002
12814504914100641571311 ~2005
1281479411256295882310 ~2002
1281482063256296412710 ~2002
1281483323256296664710 ~2002
1281529211256305842310 ~2002
1281573599256314719910 ~2002
1281651323256330264710 ~2002
Exponent Prime Factor Digits Year
1281680353769008211910 ~2003
12816810835383060548711 ~2005
1281690131256338026310 ~2002
1281700391256340078310 ~2002
1281755821769053492710 ~2003
1281762203256352440710 ~2002
128183734111023801132712 ~2006
12818529375127411748111 ~2005
1281897013769138207910 ~2003
1281898619256379723910 ~2002
1281905123256381024710 ~2002
12819145491794680368711 ~2004
1281915359256383071910 ~2002
1281921131256384226310 ~2002
1281938351256387670310 ~2002
12819412491025552999311 ~2004
1282010881769206528710 ~2003
1282036559256407311910 ~2002
1282046723256409344710 ~2002
1282074539256414907910 ~2002
12821746796154438459311 ~2006
1282208183256441636710 ~2002
1282209503256441900710 ~2002
1282296419256459283910 ~2002
1282318571256463714310 ~2002
Home
4.724.182 digits
e-mail
25-04-13