Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1273246223254649244710 ~2002
1273255583254651116710 ~2002
1273357139254671427910 ~2002
1273358111254671622310 ~2002
1273361651254672330310 ~2002
12734101191018728095311 ~2004
1273444031254688806310 ~2002
1273492799254698559910 ~2002
1273541603254708320710 ~2002
1273685291254737058310 ~2002
12737178672037948587311 ~2004
1273728359254745671910 ~2002
1273732319254746463910 ~2002
1273778477764267086310 ~2003
1273810823254762164710 ~2002
1273885031254777006310 ~2002
1273907051254781410310 ~2002
1273924451254784890310 ~2002
12739288011019143040911 ~2004
1273967483254793496710 ~2002
1274046857764428114310 ~2003
12740541531783675814311 ~2004
1274102891254820578310 ~2002
1274130001764478000710 ~2003
1274151083254830216710 ~2002
Exponent Prime Factor Digits Year
12741592611019327408911 ~2004
1274185943254837188710 ~2002
1274192819254838563910 ~2002
12742137711019371016911 ~2004
1274216231254843246310 ~2002
1274283683254856736710 ~2002
12743006172038880987311 ~2004
1274358719254871743910 ~2002
1274365201764619120710 ~2003
1274423231254884646310 ~2002
1274431439254886287910 ~2002
1274485657764691394310 ~2003
1274490083254898016710 ~2002
1274492519254898503910 ~2002
1274494357764696614310 ~2003
1274509343254901868710 ~2002
1274527921764716752710 ~2003
1274531399254906279910 ~2002
1274569559254913911910 ~2002
1274584331254916866310 ~2002
1274596259254919251910 ~2002
1274614403254922880710 ~2002
12746362911019709032911 ~2004
1274709851254941970310 ~2002
12747305511019784440911 ~2004
Exponent Prime Factor Digits Year
1274747219254949443910 ~2002
12747570619178250839311 ~2006
1274762579254952515910 ~2002
12748011592294642086311 ~2004
1274896319254979263910 ~2002
1274908751254981750310 ~2002
1274942423254988484710 ~2002
1274946899254989379910 ~2002
12749892291019991383311 ~2004
1274991071254998214310 ~2002
1274993243254998648710 ~2002
1275000203255000040710 ~2002
1275001379255000275910 ~2002
12750178031275017803111 ~2004
1275096059255019211910 ~2002
1275097403255019480710 ~2002
12751117032040178724911 ~2004
1275137159255027431910 ~2002
1275148883255029776710 ~2002
1275208381765125028710 ~2003
1275211331255042266310 ~2002
12752152092805473459911 ~2005
1275302279255060455910 ~2002
1275340463255068092710 ~2002
1275366731255073346310 ~2002
Exponent Prime Factor Digits Year
12753717111020297368911 ~2004
1275458291255091658310 ~2002
1275473351255094670310 ~2002
12754860012040777601711 ~2004
1275523451255104690310 ~2002
1275552419255110483910 ~2002
1275571597765342958310 ~2003
1275616103255123220710 ~2002
1275621551255124310310 ~2002
12756264591020501167311 ~2004
1275646583255129316710 ~2002
1275682871255136574310 ~2002
1275715817765429490310 ~2003
1275760751255152150310 ~2002
1275826439255165287910 ~2002
1275833257765499954310 ~2003
1275840281765504168710 ~2003
1275872459255174491910 ~2002
12758729471275872947111 ~2004
1275882791255176558310 ~2002
12760875171020870013711 ~2004
1276093631255218726310 ~2002
12761826291020946103311 ~2004
1276185719255237143910 ~2002
1276191551255238310310 ~2002
Home
4.724.182 digits
e-mail
25-04-13