Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1237670309990136247310 ~2003
12377134974703311288711 ~2005
1237789463247557892710 ~2002
12378041893713412567111 ~2005
123783474717824820356912 ~2007
1237844963247568992710 ~2002
12378643372970874408911 ~2005
1237871543247574308710 ~2002
1237872491247574498310 ~2002
1237886459247577291910 ~2002
1237926311247585262310 ~2002
1237931351247586270310 ~2002
1237938839990351071310 ~2003
1237946041742767624710 ~2003
1237966199247593239910 ~2002
1237990811990392648910 ~2003
1238088661742853196710 ~2003
1238141291247628258310 ~2002
1238149163247629832710 ~2002
1238161157742896694310 ~2003
1238170379247634075910 ~2002
1238182859247636571910 ~2002
12382100815943408388911 ~2005
1238215031247643006310 ~2002
1238287859247657571910 ~2002
Exponent Prime Factor Digits Year
1238417933743050759910 ~2003
1238417951247683590310 ~2002
1238420483247684096710 ~2002
1238449319247689863910 ~2002
1238476451247695290310 ~2002
12384810713220050784711 ~2005
1238513819247702763910 ~2002
1238536571247707314310 ~2002
1238542043247708408710 ~2002
1238562881743137728710 ~2003
1238597999247719599910 ~2002
1238656541743193924710 ~2003
1238670143247734028710 ~2002
1238679791247735958310 ~2002
1238811733743287039910 ~2003
1238858639247771727910 ~2002
1238859899247771979910 ~2002
1238872139247774427910 ~2002
1238892899247778579910 ~2002
1238933639247786727910 ~2002
1238945219247789043910 ~2002
1238984963247796992710 ~2002
1239006683247801336710 ~2002
1239025661743415396710 ~2003
1239077783247815556710 ~2002
Exponent Prime Factor Digits Year
1239088751247817750310 ~2002
1239103499247820699910 ~2002
1239190921743514552710 ~2003
1239221831247844366310 ~2002
1239238753743543251910 ~2003
1239305161743583096710 ~2003
1239330017991464013710 ~2003
1239350471247870094310 ~2002
1239380339247876067910 ~2002
1239436631247887326310 ~2002
1239460679247892135910 ~2002
1239502937991602349710 ~2003
1239547091247909418310 ~2002
1239669731247933946310 ~2002
12396773993966967676911 ~2005
1239704237743822542310 ~2003
1239706379991765103310 ~2003
1239767051247953410310 ~2002
1239769631247953926310 ~2002
1239911639247982327910 ~2002
1239961013743976607910 ~2003
12400275191240027519111 ~2004
12400363131736050838311 ~2004
12400470417688291654311 ~2006
1240050503248010100710 ~2002
Exponent Prime Factor Digits Year
1240071671248014334310 ~2002
12401001531736140214311 ~2004
1240106017744063610310 ~2003
1240122263248024452710 ~2002
1240136951248027390310 ~2002
1240176251248035250310 ~2002
1240229273744137563910 ~2003
12403188015705466484711 ~2005
1240387979248077595910 ~2002
1240397771248079554310 ~2002
1240474643248094928710 ~2002
12404961891736694664711 ~2004
1240509311248101862310 ~2002
1240511113744306667910 ~2003
1240528511992422808910 ~2003
1240534859248106971910 ~2002
1240535651248107130310 ~2002
1240545563248109112710 ~2002
1240585103248117020710 ~2002
1240639919248127983910 ~2002
1240691357744414814310 ~2003
1240739459248147891910 ~2002
1240759511248151902310 ~2002
1240824587992659669710 ~2003
1240837583248167516710 ~2002
Home
4.724.182 digits
e-mail
25-04-13