Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1198458433719075059910 ~2003
1198488521719093112710 ~2003
119849230730921101520712 ~2007
1198505981958804784910 ~2003
1198515551239703110310 ~2002
1198549139239709827910 ~2002
1198550063239710012710 ~2002
1198551443239710288710 ~2002
1198577423239715484710 ~2002
1198597511239719502310 ~2002
11986045738629952925711 ~2006
1198612451239722490310 ~2002
1198674479958939583310 ~2003
11987066111198706611111 ~2004
1198706783239741356710 ~2002
1198710203239742040710 ~2002
1198710923239742184710 ~2002
1198711499239742299910 ~2002
1198768391239753678310 ~2002
1198831541959065232910 ~2003
1198835471239767094310 ~2002
1198850669959080535310 ~2003
1198961651239792330310 ~2002
1199020477719412286310 ~2003
1199089019239817803910 ~2002
Exponent Prime Factor Digits Year
1199089631239817926310 ~2002
11991077872158394016711 ~2004
1199124851239824970310 ~2002
1199130059239826011910 ~2002
1199183987959347189710 ~2003
1199251499239850299910 ~2002
1199272961719563776710 ~2003
11992918571918866971311 ~2004
1199348471239869694310 ~2002
1199349383239869876710 ~2002
1199363051239872610310 ~2002
1199378879239875775910 ~2002
1199409377719645626310 ~2003
1199419943239883988710 ~2002
1199448779239889755910 ~2002
1199451083239890216710 ~2002
1199525939959620751310 ~2003
1199532371239906474310 ~2002
1199642219239928443910 ~2002
1199824033719894419910 ~2003
1199939183239987836710 ~2002
1199965619239993123910 ~2002
1200061619240012323910 ~2002
1200090959240018191910 ~2002
12001365892880327813711 ~2005
Exponent Prime Factor Digits Year
1200139943240027988710 ~2002
1200172019240034403910 ~2002
1200208811960167048910 ~2003
1200242063240048412710 ~2002
1200253139240050627910 ~2002
1200265439240053087910 ~2002
120027547712482864960912 ~2006
1200291023240058204710 ~2002
1200332879240066575910 ~2002
1200333839240066767910 ~2002
1200344231240068846310 ~2002
1200354671240070934310 ~2002
1200424091240084818310 ~2002
1200438023240087604710 ~2002
1200442571240088514310 ~2002
1200457679240091535910 ~2002
1200483329960386663310 ~2003
1200563951240112790310 ~2002
1200564203240112840710 ~2002
1200594911240118982310 ~2002
1200665051240133010310 ~2002
1200780083240156016710 ~2002
1200789983240157996710 ~2002
1200795899240159179910 ~2002
1200816299240163259910 ~2002
Exponent Prime Factor Digits Year
12009125771921460123311 ~2004
1200939281720563568710 ~2003
1200961631240192326310 ~2002
1200983261720589956710 ~2003
12010464712161883647911 ~2004
1201093451240218690310 ~2002
1201100891240220178310 ~2002
1201214291240242858310 ~2002
1201343519240268703910 ~2002
1201370531961096424910 ~2003
1201390559240278111910 ~2002
1201403521720842112710 ~2003
1201464263240292852710 ~2002
1201555403240311080710 ~2002
1201637303240327460710 ~2002
1201662383240332476710 ~2002
1201673789961339031310 ~2003
1201698299240339659910 ~2002
1201707131240341426310 ~2002
1201749917721049950310 ~2003
12017584491682461828711 ~2004
1201806251240361250310 ~2002
1201856303240371260710 ~2002
1201875263240375052710 ~2002
1201880857721128514310 ~2003
Home
4.724.182 digits
e-mail
25-04-13