Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1176354059235270811910 ~2002
1176367607941094085710 ~2003
1176402761941122208910 ~2003
1176420911235284182310 ~2002
1176471911235294382310 ~2002
1176491753705895051910 ~2003
1176512783235302556710 ~2002
1176529331235305866310 ~2002
1176552173705931303910 ~2003
1176570431235314086310 ~2002
1176582131235316426310 ~2002
1176626303235325260710 ~2002
1176691391235338278310 ~2002
1176700177706020106310 ~2003
1176700463235340092710 ~2002
1176719171235343834310 ~2002
1176849857941479885710 ~2003
1176883751235376750310 ~2002
1176902501706141500710 ~2003
1176912083235382416710 ~2002
1176925439235385087910 ~2002
1176979439235395887910 ~2002
1177002719235400543910 ~2002
11770052272118609408711 ~2004
1177020203235404040710 ~2002
Exponent Prime Factor Digits Year
1177026793706216075910 ~2003
11770770671883323307311 ~2004
1177084691235416938310 ~2002
1177112399235422479910 ~2002
1177196771235439354310 ~2002
1177253177706351906310 ~2003
11772626231177262623111 ~2004
1177307617706384570310 ~2003
1177328281706396968710 ~2003
1177337723235467544710 ~2002
1177424723235484944710 ~2002
1177449863235489972710 ~2002
11774694071883951051311 ~2004
1177509251235501850310 ~2002
11775266294710106516111 ~2005
1177543033706525819910 ~2003
1177558883235511776710 ~2002
1177568543235513708710 ~2002
11775920696358997172711 ~2005
1177607351235521470310 ~2002
11776163392119709410311 ~2004
1177657931235531586310 ~2002
1177698311235539662310 ~2002
11777106431177710643111 ~2004
1177716983235543396710 ~2002
Exponent Prime Factor Digits Year
1177719311235543862310 ~2002
1177721939235544387910 ~2002
1177728911235545782310 ~2002
1177734773706640863910 ~2003
1177759343235551868710 ~2002
1177766939235553387910 ~2002
11778199132826767791311 ~2004
1177841213706704727910 ~2003
1177849859235569971910 ~2002
1177866149942292919310 ~2003
11778751331884600212911 ~2004
1177901723235580344710 ~2002
11780870331649321846311 ~2004
1178116211235623242310 ~2002
1178140871235628174310 ~2002
1178236511235647302310 ~2002
1178240363235648072710 ~2002
1178245583235649116710 ~2002
11782732731649582582311 ~2004
1178319421706991652710 ~2003
1178337239235667447910 ~2002
1178417099235683419910 ~2002
1178430551235686110310 ~2002
1178503439235700687910 ~2002
1178504903235700980710 ~2002
Exponent Prime Factor Digits Year
1178567233707140339910 ~2003
1178567399235713479910 ~2002
1178568179235713635910 ~2002
11785900875657232417711 ~2005
1178609363235721872710 ~2002
11786619892828788773711 ~2004
1178664659235732931910 ~2002
1178712137942969709710 ~2003
1178719211235743842310 ~2002
1178739323235747864710 ~2002
1178753171235750634310 ~2002
1178764157943011325710 ~2003
1178780903235756180710 ~2002
1178781239235756247910 ~2002
1178812981707287788710 ~2003
1178851631235770326310 ~2002
1178891123235778224710 ~2002
1178944103235788820710 ~2002
11790328371650645971911 ~2004
11790520991179052099111 ~2004
11790696731886511476911 ~2004
1179124979943299983310 ~2003
1179161363235832272710 ~2002
1179173423235834684710 ~2002
1179306119235861223910 ~2002
Home
4.724.182 digits
e-mail
25-04-13