Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1159418713695651227910 ~2003
1159436951231887390310 ~2002
1159491803231898360710 ~2002
1159502137695701282310 ~2003
1159559699231911939910 ~2002
1159594721927675776910 ~2003
11596256471159625647111 ~2003
1159647161927717728910 ~2003
1159666223231933244710 ~2002
1159743311231948662310 ~2002
1159772639231954527910 ~2002
1159800539231960107910 ~2002
1159830299231966059910 ~2002
1159840043231968008710 ~2002
1159850017695910010310 ~2003
1159863443231972688710 ~2002
1159874939231974987910 ~2002
1159952231231990446310 ~2002
1159973519231994703910 ~2002
1159977743231995548710 ~2002
1159989503231997900710 ~2002
1160013083232002616710 ~2002
1160071331232014266310 ~2002
1160122751232024550310 ~2002
1160139839232027967910 ~2002
Exponent Prime Factor Digits Year
1160204459232040891910 ~2002
11602067571624289459911 ~2004
116024374121116436086312 ~2007
11602558391160255839111 ~2003
1160257823232051564710 ~2002
1160320559232064111910 ~2002
1160321579232064315910 ~2002
1160337443232067488710 ~2002
1160357519232071503910 ~2002
1160367673696220603910 ~2003
1160399831928319864910 ~2003
1160492219232098443910 ~2002
1160529257696317554310 ~2003
1160532563232106512710 ~2002
1160535059232107011910 ~2002
1160564771232112954310 ~2002
1160594579232118915910 ~2002
11606021532553324736711 ~2004
1160629451232125890310 ~2002
11606542271160654227111 ~2003
11606771838356875717711 ~2006
1160688239232137647910 ~2002
11607651015571672484911 ~2005
1160808197696484918310 ~2003
1160834879232166975910 ~2002
Exponent Prime Factor Digits Year
1160839331232167866310 ~2002
11608531391160853139111 ~2003
1160882003232176400710 ~2002
1160885963232177192710 ~2002
1160899139232179827910 ~2002
1160911259232182251910 ~2002
1160937203232187440710 ~2002
1160956037928764829710 ~2003
1160966171232193234310 ~2002
1160991521928793216910 ~2003
11610371692786489205711 ~2004
1161049139232209827910 ~2002
1161103379232220675910 ~2002
1161106319232221263910 ~2002
1161139043232227808710 ~2002
1161145091232229018310 ~2002
1161188207928950565710 ~2003
1161200437696720262310 ~2003
1161269357696761614310 ~2003
1161271619232254323910 ~2002
1161315899929052719310 ~2003
1161408553696845131910 ~2003
1161425231232285046310 ~2002
1161453913696872347910 ~2003
1161481823232296364710 ~2002
Exponent Prime Factor Digits Year
1161483143232296628710 ~2002
1161506711232301342310 ~2002
1161516263232303252710 ~2002
1161530063232306012710 ~2002
1161643799232328759910 ~2002
1161698669929358935310 ~2003
1161727373697036423910 ~2003
1161741989929393591310 ~2003
1161754739232350947910 ~2002
1161763931232352786310 ~2002
1161771683232354336710 ~2002
1161867851232373570310 ~2002
1161919823232383964710 ~2002
1161945839232389167910 ~2002
1162025003232405000710 ~2002
1162131263232426252710 ~2002
1162173143232434628710 ~2002
1162179059232435811910 ~2002
1162208279232441655910 ~2002
1162222079232444415910 ~2002
11622366131859578580911 ~2004
1162270463232454092710 ~2002
1162284653697370791910 ~2003
1162294093697376455910 ~2003
1162356719232471343910 ~2002
Home
4.724.182 digits
e-mail
25-04-13