Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
11329653112039337559911 ~2004
1132993583226598716710 ~2002
1132998203226599640710 ~2002
1133005943226601188710 ~2002
1133066717679840030310 ~2003
1133082893679849735910 ~2003
1133088611226617722310 ~2002
1133105423226621084710 ~2002
1133112251226622450310 ~2002
1133121911226624382310 ~2002
11331278111133127811111 ~2003
1133135891226627178310 ~2002
1133159171226631834310 ~2002
11331894892719654773711 ~2004
11332224172719733800911 ~2004
1133243711226648742310 ~2002
1133269673679961803910 ~2003
1133285183226657036710 ~2002
1133394491226678898310 ~2002
1133410823226682164710 ~2002
1133444171226688834310 ~2002
1133528471226705694310 ~2002
1133557751226711550310 ~2002
1133597789906878231310 ~2003
1133624699226724939910 ~2002
Exponent Prime Factor Digits Year
11336342773400902831111 ~2005
1133639999226727999910 ~2002
1133691673680215003910 ~2003
11337361932494219624711 ~2004
1133738783226747756710 ~2002
1133780941680268564710 ~2003
1133804519907043615310 ~2003
11338351511814136241711 ~2004
1133845859226769171910 ~2002
1133934653680360791910 ~2003
1133970143226794028710 ~2002
1133976101680385660710 ~2003
1134011303226802260710 ~2002
1134044771226808954310 ~2002
1134046517907237213710 ~2003
1134056369907245095310 ~2003
1134058979226811795910 ~2002
1134088031226817606310 ~2002
11341147195670573595111 ~2005
1134126443226825288710 ~2002
1134145703226829140710 ~2002
1134198881907359104910 ~2003
1134312983226862596710 ~2002
1134323279226864655910 ~2002
1134342971226868594310 ~2002
Exponent Prime Factor Digits Year
1134353039226870607910 ~2002
1134434051226886810310 ~2002
1134464879226892975910 ~2002
1134516359226903271910 ~2002
1134516431226903286310 ~2002
1134571271226914254310 ~2002
1134574643226914928710 ~2002
1134636479226927295910 ~2002
1134668939226933787910 ~2002
1134706511226941302310 ~2002
1134714803226942960710 ~2002
1134729539226945907910 ~2002
11347312871815570059311 ~2004
11347430111134743011111 ~2003
1134752891226950578310 ~2002
1134775637680865382310 ~2003
1134825239226965047910 ~2002
113484848316568787851912 ~2006
1134850859226970171910 ~2002
1134858359226971671910 ~2002
1134876731226975346310 ~2002
1134888851226977770310 ~2002
11348999813404699943111 ~2005
1134909541680945724710 ~2003
11351112171589155703911 ~2004
Exponent Prime Factor Digits Year
1135134503227026900710 ~2002
1135204319227040863910 ~2002
1135220129908176103310 ~2003
1135287119227057423910 ~2002
1135361999227072399910 ~2002
1135382543227076508710 ~2002
11353858092724925941711 ~2004
1135392743227078548710 ~2002
1135410359227082071910 ~2002
1135422221681253332710 ~2003
1135456457908365165710 ~2003
1135462511227092502310 ~2002
1135483259227096651910 ~2002
1135534079227106815910 ~2002
11355605412498233190311 ~2004
1135573139227114627910 ~2002
11355762413406728723111 ~2005
1135591043227118208710 ~2002
1135600019227120003910 ~2002
1135601501681360900710 ~2003
1135601543227120308710 ~2002
11356317431135631743111 ~2003
1135649951227129990310 ~2002
1135698131227139626310 ~2002
1135727303227145460710 ~2002
Home
4.724.182 digits
e-mail
25-04-13