Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
10858659171520212283911 ~2004
10858886591954599586311 ~2004
1085903831217180766310 ~2002
1085930903217186180710 ~2002
1085953301651571980710 ~2003
1085982323217196464710 ~2002
1086008939217201787910 ~2002
1086017759217203551910 ~2002
1086064043217212808710 ~2002
1086127391217225478310 ~2002
1086168431217233686310 ~2002
1086177341868941872910 ~2003
1086201073651720643910 ~2003
1086225359217245071910 ~2002
10862452631737992420911 ~2004
1086259943217251988710 ~2002
108629568728678206136912 ~2007
1086301631217260326310 ~2002
1086343763217268752710 ~2002
1086351131217270226310 ~2002
1086359243217271848710 ~2002
1086375371217275074310 ~2002
1086397583217279516710 ~2002
1086421781869137424910 ~2003
1086423293651853975910 ~2003
Exponent Prime Factor Digits Year
1086501803217300360710 ~2002
1086564097651938458310 ~2003
1086569293651941575910 ~2003
1086591911217318382310 ~2002
1086605771217321154310 ~2002
1086627011217325402310 ~2002
1086693143217338628710 ~2002
1086698219217339643910 ~2002
10867390791956130342311 ~2004
1086754199217350839910 ~2002
1086795971217359194310 ~2002
1086801179217360235910 ~2002
1086805679217361135910 ~2002
1086870959217374191910 ~2002
1086878843217375768710 ~2002
1086884501652130700710 ~2003
1086903473652142083910 ~2003
1086909899217381979910 ~2002
1086936023217387204710 ~2002
1086942299869553839310 ~2003
10869653231086965323111 ~2003
1087040413652224247910 ~2003
10870421415000393848711 ~2005
1087069253652241551910 ~2003
1087103603217420720710 ~2002
Exponent Prime Factor Digits Year
1087109351217421870310 ~2002
1087115699217423139910 ~2002
1087129529869703623310 ~2003
1087192703217438540710 ~2002
1087265951217453190310 ~2002
1087295351217459070310 ~2002
1087315991217463198310 ~2002
1087422179217484435910 ~2002
1087425551217485110310 ~2002
1087438511869950808910 ~2003
1087487057652492234310 ~2003
1087490951217498190310 ~2002
1087526519217505303910 ~2002
1087561571217512314310 ~2002
1087623419217524683910 ~2002
1087623539217524707910 ~2002
1087648931217529786310 ~2002
1087678499217535699910 ~2002
1087688603217537720710 ~2002
1087692191217538438310 ~2002
10877216391957898950311 ~2004
1087724471217544894310 ~2002
1087750571217550114310 ~2002
1087802483217560496710 ~2002
1087805219217561043910 ~2002
Exponent Prime Factor Digits Year
1087816871217563374310 ~2002
10878273291522958260711 ~2004
1087838831870271064910 ~2003
10878754975874527683911 ~2005
1087884683217576936710 ~2002
108788982710443742339312 ~2006
1087904903217580980710 ~2002
1087938011217587602310 ~2002
1087978739870382991310 ~2003
1087979723217595944710 ~2002
1087980779217596155910 ~2002
1088007419217601483910 ~2002
1088051537652830922310 ~2003
1088060243217612048710 ~2002
1088077499870461999310 ~2003
1088150183217630036710 ~2002
10881582431088158243111 ~2003
1088166791217633358310 ~2002
1088205353652923211910 ~2003
1088228783217645756710 ~2002
1088236811217647362310 ~2002
1088241683217648336710 ~2002
1088350943217670188710 ~2002
1088422091217684418310 ~2002
1088427503217685500710 ~2002
Home
4.724.182 digits
e-mail
25-04-13