Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1059366263211873252710 ~2001
1059389843211877968710 ~2001
1059405673635643403910 ~2003
1059455879211891175910 ~2001
10594738092330842379911 ~2004
1059504077635702446310 ~2003
1059518543211903708710 ~2001
1059531217635718730310 ~2003
10595646297628865328911 ~2005
1059585599211917119910 ~2001
1059599399847679519310 ~2003
1059612647847690117710 ~2003
1059617759211923551910 ~2001
1059618071211923614310 ~2001
1059663119211932623910 ~2001
10596718433390949897711 ~2004
1059695941635817564710 ~2003
1059799943211959988710 ~2001
1059805451211961090310 ~2001
1059815333635889199910 ~2003
1059853859211970771910 ~2001
1059888743211977748710 ~2001
10598921995299460995111 ~2005
1059904619211980923910 ~2001
1059911603211982320710 ~2001
Exponent Prime Factor Digits Year
1059914701635948820710 ~2003
1059920531211984106310 ~2001
1059938773635963263910 ~2003
1059965303211993060710 ~2001
1060025171848020136910 ~2003
1060036823212007364710 ~2001
1060057871212011574310 ~2001
1060071707848057365710 ~2003
1060078451212015690310 ~2001
1060141919212028383910 ~2001
1060197161848157728910 ~2003
1060234583212046916710 ~2001
1060257563212051512710 ~2001
1060287911212057582310 ~2001
10603175292544762069711 ~2004
10603827071908688872711 ~2004
1060395659212079131910 ~2001
1060413899212082779910 ~2001
1060455983212091196710 ~2001
1060465633636279379910 ~2003
1060500071212100014310 ~2001
1060547591212109518310 ~2001
1060573463212114692710 ~2001
1060575731212115146310 ~2001
1060622819212124563910 ~2001
Exponent Prime Factor Digits Year
10606426193394056380911 ~2004
1060671113636402667910 ~2003
1060731671212146334310 ~2001
1060801499212160299910 ~2001
1060824431212164886310 ~2001
1060852679212170535910 ~2001
1060860323212172064710 ~2001
1060917503212183500710 ~2001
1060941131212188226310 ~2001
1060976677636586006310 ~2003
10609857133182957139111 ~2004
1061103299212220659910 ~2001
1061103971212220794310 ~2001
1061130071212226014310 ~2001
1061149619212229923910 ~2001
10612220831061222083111 ~2003
1061229203212245840710 ~2001
1061257583212251516710 ~2001
1061298863212259772710 ~2001
1061303521636782112710 ~2003
1061307083212261416710 ~2001
1061354603212270920710 ~2001
1061377463212275492710 ~2001
1061386919212277383910 ~2001
1061430743212286148710 ~2001
Exponent Prime Factor Digits Year
1061512271212302454310 ~2001
1061512619212302523910 ~2001
1061535239212307047910 ~2001
1061553011212310602310 ~2001
1061556539212311307910 ~2001
10615704372547769048911 ~2004
1061599463212319892710 ~2001
1061630351212326070310 ~2001
1061639063212327812710 ~2001
10616408833609579002311 ~2005
1061663411849330728910 ~2003
106173906714439651311312 ~2006
1061754971212350994310 ~2001
1061859959212371991910 ~2001
1061894303212378860710 ~2001
1061921717849537373710 ~2003
1061925443212385088710 ~2001
1061929853637157911910 ~2003
1061942639212388527910 ~2001
10619590791911526342311 ~2004
1061994719849595775310 ~2003
106200239912744028788112 ~2006
1062030143212406028710 ~2001
1062086639212417327910 ~2001
1062092747849674197710 ~2003
Home
4.724.182 digits
e-mail
25-04-13