Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1030128629824102903310 ~2003
1030147883206029576710 ~2001
1030168211206033642310 ~2001
1030184471206036894310 ~2001
1030219511206043902310 ~2001
1030307963206061592710 ~2001
1030348799206069759910 ~2001
1030367291206073458310 ~2001
103038661319577345647112 ~2006
1030438631206087726310 ~2001
1030441931206088386310 ~2001
1030458059206091611910 ~2001
1030478831206095766310 ~2001
1030567511206113502310 ~2001
1030575443206115088710 ~2001
1030575641618345384710 ~2003
1030584601618350760710 ~2003
1030589783206117956710 ~2001
1030674839206134967910 ~2001
1030712233618427339910 ~2003
1030739537824591629710 ~2003
1030767131206153426310 ~2001
1030768559206153711910 ~2001
1030817591206163518310 ~2001
1030843871206168774310 ~2001
Exponent Prime Factor Digits Year
1030845661618507396710 ~2003
1030853581618512148710 ~2003
1030855499206171099910 ~2001
1030864981618518988710 ~2003
10308794711030879471111 ~2003
1030911097618546658310 ~2003
1030926551206185310310 ~2001
1030926983206185396710 ~2001
1030930739206186147910 ~2001
1030975763206195152710 ~2001
1030983251206196650310 ~2001
10309968593299189948911 ~2004
1031027819824822255310 ~2003
1031028899206205779910 ~2001
1031046713618628027910 ~2003
1031082673618649603910 ~2003
10310977631031097763111 ~2003
1031169371206233874310 ~2001
1031176061618705636710 ~2003
1031177137618706282310 ~2003
1031186111206237222310 ~2001
1031191919206238383910 ~2001
1031200403206240080710 ~2001
1031211059206242211910 ~2001
1031253803206250760710 ~2001
Exponent Prime Factor Digits Year
1031262781618757668710 ~2003
1031323043206264608710 ~2001
1031328359206265671910 ~2001
1031344297618806578310 ~2003
1031390627825112501710 ~2003
1031425793618855475910 ~2003
1031426183206285236710 ~2001
10314279971650284795311 ~2004
1031444423206288884710 ~2001
10314484131444027778311 ~2003
1031451851825161480910 ~2003
1031453711206290742310 ~2001
1031464403206292880710 ~2001
1031475143206295028710 ~2001
1031490899206298179910 ~2001
1031492963206298592710 ~2001
1031506709825205367310 ~2003
1031508011206301602310 ~2001
1031544881618926928710 ~2003
1031549669825239735310 ~2003
1031554379206310875910 ~2001
10315888672682131054311 ~2004
1031610059206322011910 ~2001
1031650091825320072910 ~2003
1031668223206333644710 ~2001
Exponent Prime Factor Digits Year
1031676491206335298310 ~2001
1031682563206336512710 ~2001
1031686693619012015910 ~2003
10316999591031699959111 ~2003
103178339313825897466312 ~2006
10318230311031823031111 ~2003
1031827031206365406310 ~2001
1031852543206370508710 ~2001
1031864423206372884710 ~2001
10318814476604041260911 ~2005
1031905157619143094310 ~2003
1031916617619149970310 ~2003
1031922263206384452710 ~2001
1031926739206385347910 ~2001
1031949911206389982310 ~2001
10319526671031952667111 ~2003
1032062963206412592710 ~2001
1032081383206416276710 ~2001
1032108461619265076710 ~2003
10321713791032171379111 ~2003
1032193691206438738310 ~2001
1032258673619355203910 ~2003
1032280631206456126310 ~2001
1032286823206457364710 ~2001
1032338123206467624710 ~2001
Home
4.724.182 digits
e-mail
25-04-13