Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
8041213271286594123311 ~2003
804139103160827820710 ~2001
804147983160829596710 ~2001
804160583160832116710 ~2001
804164443804164443110 ~2002
804175343160835068710 ~2001
804175643160835128710 ~2001
804178751160835750310 ~2001
804192023160838404710 ~2001
804218351160843670310 ~2001
804222959160844591910 ~2001
804242399160848479910 ~2001
804252989643402391310 ~2002
80425539123966810651912 ~2006
8042701393377934583911 ~2004
8042741293217096516111 ~2004
804296291643437032910 ~2002
804301919643441535310 ~2002
804322097482593258310 ~2002
804332723160866544710 ~2001
804380573482628343910 ~2002
804395639160879127910 ~2001
804399679804399679110 ~2002
804427511160885502310 ~2001
804439763160887952710 ~2001
Exponent Prime Factor Digits Year
804485879160897175910 ~2001
804491593482694955910 ~2002
804528083160905616710 ~2001
8045290031287246404911 ~2003
804551519160910303910 ~2001
804555623160911124710 ~2001
804581279160916255910 ~2001
804612383160922476710 ~2001
804614561482768736710 ~2002
804654239160930847910 ~2001
804662861643730288910 ~2002
804663793482798275910 ~2002
804672241482803344710 ~2002
804711599160942319910 ~2001
804720431160944086310 ~2001
804730859160946171910 ~2001
804781199160956239910 ~2001
804808139160961627910 ~2001
804812909643850327310 ~2002
804877511160975502310 ~2001
804885671160977134310 ~2001
8049125171931790040911 ~2003
804917219160983443910 ~2001
804918899160983779910 ~2001
804923783160984756710 ~2001
Exponent Prime Factor Digits Year
804934523160986904710 ~2001
804958943160991788710 ~2001
804963539160992707910 ~2001
804977039160995407910 ~2001
804981839160996367910 ~2001
8049961033380983632711 ~2004
805005863161001172710 ~2001
805031873483019123910 ~2002
805045079161009015910 ~2001
80505541148947368988912 ~2007
805067099161013419910 ~2001
805107983161021596710 ~2001
805127819161025563910 ~2001
805131059161026211910 ~2001
805146059161029211910 ~2001
805164911161032982310 ~2001
805192439161038487910 ~2001
805198391161039678310 ~2001
805212581483127548710 ~2002
805228199161045639910 ~2001
805233839161046767910 ~2001
805241219161048243910 ~2001
805257317483154390310 ~2002
8052678673221071468111 ~2004
805284719161056943910 ~2001
Exponent Prime Factor Digits Year
805333631161066726310 ~2001
805340843161068168710 ~2001
805369451161073890310 ~2001
805384631161076926310 ~2001
805415951644332760910 ~2002
805432559161086511910 ~2001
805456031161091206310 ~2001
805467857483280714310 ~2002
805484951644387960910 ~2002
805561019161112203910 ~2001
805572359161114471910 ~2001
805578239161115647910 ~2001
805582559161116511910 ~2001
805629179161125835910 ~2001
8056443112094675208711 ~2003
805667399161133479910 ~2001
805684501483410700710 ~2002
805705679161141135910 ~2001
805712123161142424710 ~2001
8057150691128001096711 ~2003
805717343161143468710 ~2001
805732223161146444710 ~2001
805766303161153260710 ~2001
805780259161156051910 ~2001
8058081892417424567111 ~2003
Home
4.903.097 digits
e-mail
25-07-08