Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1011803099202360619910 ~2001
1011805937607083562310 ~2002
1011820217607092130310 ~2002
1011828481607097088710 ~2002
1011834119202366823910 ~2001
1011841021607104612710 ~2002
1011842483202368496710 ~2001
1011843863202368772710 ~2001
1011861971202372394310 ~2001
1011882023202376404710 ~2001
1011889337809511469710 ~2003
1011905243202381048710 ~2001
1011916799809533439310 ~2003
1011921899202384379910 ~2001
10119347471011934747111 ~2003
1012018613607211167910 ~2002
1012036933607222159910 ~2002
1012078451202415690310 ~2001
1012128059202425611910 ~2001
1012140791202428158310 ~2001
1012156511202431302310 ~2001
10121862911012186291111 ~2003
1012200191202440038310 ~2001
101223452310527239039312 ~2006
1012262903202452580710 ~2001
Exponent Prime Factor Digits Year
1012270991202454198310 ~2001
1012293311202458662310 ~2001
1012307039202461407910 ~2001
1012344059202468811910 ~2001
1012358003202471600710 ~2001
1012359371202471874310 ~2001
1012410419202482083910 ~2001
10124229771417392167911 ~2003
1012443203202488640710 ~2001
1012459081607475448710 ~2002
10124955433442484846311 ~2004
10125603713240193187311 ~2004
1012618283202523656710 ~2001
1012640561810112448910 ~2003
1012728179202545635910 ~2001
1012816979202563395910 ~2001
1012854659202570931910 ~2001
1012873271202574654310 ~2001
1012938293607762975910 ~2002
10129622171620739547311 ~2004
1012969883202593976710 ~2001
1012986059202597211910 ~2001
1012998719202599743910 ~2001
1013019071202603814310 ~2001
1013022599202604519910 ~2001
Exponent Prime Factor Digits Year
1013029931202605986310 ~2001
10130342632633889083911 ~2004
1013065583202613116710 ~2001
10130924171620947867311 ~2004
1013104091202620818310 ~2001
1013119753607871851910 ~2002
10131602872634216746311 ~2004
1013176001810540800910 ~2003
1013176583202635316710 ~2001
1013234723202646944710 ~2001
1013239919202647983910 ~2001
1013289143202657828710 ~2001
1013309903202661980710 ~2001
10133376171418672663911 ~2003
1013345699202669139910 ~2001
1013375339810700271310 ~2003
1013399063202679812710 ~2001
1013410631202682126310 ~2001
1013464799202692959910 ~2001
1013531591202706318310 ~2001
1013567111810853688910 ~2003
1013598161608158896710 ~2002
1013614799810891839310 ~2003
10136198511824515731911 ~2004
1013624669810899735310 ~2003
Exponent Prime Factor Digits Year
1013630339202726067910 ~2001
1013635157810908125710 ~2003
1013641019202728203910 ~2001
10136572874054629148111 ~2005
1013699663202739932710 ~2001
1013733839202746767910 ~2001
10137794231622047076911 ~2004
1013861951202772390310 ~2001
1013883733608330239910 ~2002
10138841872433322048911 ~2004
1013941283202788256710 ~2001
1013944181811155344910 ~2003
1014041711202808342310 ~2001
1014152543202830508710 ~2001
1014165143202833028710 ~2001
1014165683202833136710 ~2001
1014213971202842794310 ~2001
1014239459202847891910 ~2001
1014246119202849223910 ~2001
10142535191014253519111 ~2003
1014313031202862606310 ~2001
1014322031202864406310 ~2001
10143287471014328747111 ~2003
1014344701608606820710 ~2002
10143557471622969195311 ~2004
Home
4.724.182 digits
e-mail
25-04-13