Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
562289159112457831910 ~1999
562295347562295347110 ~2001
562309211112461842310 ~1999
562314563112462912710 ~1999
562329503112465900710 ~1999
562376011562376011110 ~2001
562381271112476254310 ~1999
562382003112476400710 ~1999
562395083112479016710 ~1999
562400939112480187910 ~1999
562409801449927840910 ~2001
562409819112481963910 ~1999
562451003112490200710 ~1999
562483511449986808910 ~2001
562498463112499692710 ~1999
562505159112501031910 ~1999
562531019112506203910 ~1999
562545617337527370310 ~2001
562553393337532035910 ~2001
5625652738100939931311 ~2004
562580041337548024710 ~2001
562593541337556124710 ~2001
5626019292250407716111 ~2003
562652333337591399910 ~2001
562684043112536808710 ~1999
Exponent Prime Factor Digits Year
562699721337619832710 ~2001
562701673337621003910 ~2001
562724579112544915910 ~1999
562734383112546876710 ~1999
562743383112548676710 ~1999
562748243112549648710 ~1999
562773221337663932710 ~2001
562792883112558576710 ~1999
562820663112564132710 ~1999
562829009450263207310 ~2001
562830239112566047910 ~1999
562848347450278677710 ~2001
562889219112577843910 ~1999
562902611450322088910 ~2001
562905443112581088710 ~1999
562911971112582394310 ~1999
562914743112582948710 ~1999
562929239112585847910 ~1999
562954571112590914310 ~1999
562959779112591955910 ~1999
562960543562960543110 ~2001
563005823112601164710 ~1999
563021603112604320710 ~1999
563029981337817988710 ~2001
563035079112607015910 ~1999
Exponent Prime Factor Digits Year
563044523112608904710 ~1999
563047763112609552710 ~1999
5630540471013497284711 ~2002
563057303112611460710 ~1999
563060363112612072710 ~1999
563063317337837990310 ~2001
563075741450460592910 ~2001
563105771112621154310 ~1999
563130983112626196710 ~1999
563156591112631318310 ~1999
563164603901063364910 ~2002
563177759450542207310 ~2001
563180171112636034310 ~1999
563221853337933111910 ~2001
563230271450584216910 ~2001
563234219112646843910 ~1999
563245883112649176710 ~1999
563250503112650100710 ~1999
5632527712703613300911 ~2003
5632630792365704931911 ~2003
5632781811802490179311 ~2002
563285759112657151910 ~1999
563294183112658836710 ~1999
563306963112661392710 ~1999
563308871112661774310 ~1999
Exponent Prime Factor Digits Year
563340359112668071910 ~1999
563345591112669118310 ~1999
563364143112672828710 ~1999
563381099112676219910 ~1999
563383061338029836710 ~2001
563385191112677038310 ~1999
563401799112680359910 ~1999
563426723112685344710 ~1999
5634607632366535204711 ~2003
563494619112698923910 ~1999
563507771112701554310 ~1999
5635527791352526669711 ~2002
563571731112714346310 ~1999
563586011112717202310 ~1999
563614763112722952710 ~1999
563624053338174431910 ~2001
563634737789088631910 ~2001
563664743112732948710 ~1999
563689751112737950310 ~1999
563690531112738106310 ~1999
563707451112741490310 ~1999
563712833338227699910 ~2001
563715863112743172710 ~1999
563716511450973208910 ~2001
563723351112744670310 ~1999
Home
5.157.210 digits
e-mail
25-11-02