Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
974116321584469792710 ~2002
974121481584472888710 ~2002
974139359194827871910 ~2001
974163119194832623910 ~2001
974196007974196007110 ~2003
974197151194839430310 ~2001
974292551194858510310 ~2001
974324423194864884710 ~2001
974360171194872034310 ~2001
974366593584619955910 ~2002
974394203194878840710 ~2001
974400737584640442310 ~2002
974432321779545856910 ~2003
974462767974462767110 ~2003
974478803194895760710 ~2001
974486603194897320710 ~2001
974498303194899660710 ~2001
974500451194900090310 ~2001
974516111194903222310 ~2001
974559319974559319110 ~2003
974630171194926034310 ~2001
974637221779709776910 ~2003
974700071194940014310 ~2001
974718233584830939910 ~2002
974735903194947180710 ~2001
Exponent Prime Factor Digits Year
974753711194950742310 ~2001
974754923194950984710 ~2001
974791889779833511310 ~2003
974812511194962502310 ~2001
974838731194967746310 ~2001
974879651194975930310 ~2001
974918831194983766310 ~2001
974936381584961828710 ~2002
974990963194998192710 ~2001
974998151194999630310 ~2001
975010691195002138310 ~2001
975014407975014407110 ~2003
975028979195005795910 ~2001
975085213585051127910 ~2002
975102691975102691110 ~2003
975103763195020752710 ~2001
975104951195020990310 ~2001
975113417585068050310 ~2002
975119401585071640710 ~2002
975139523195027904710 ~2001
975145091195029018310 ~2001
9751578191755284074311 ~2004
975178859195035771910 ~2001
975186791195037358310 ~2001
975192791195038558310 ~2001
Exponent Prime Factor Digits Year
975211717585127030310 ~2002
9753197172925959151111 ~2004
975377531195075506310 ~2001
975430031195086006310 ~2001
9754366131365611258311 ~2003
975474719780379775310 ~2003
9754869372341168648911 ~2004
975503603195100720710 ~2001
9755258771560841403311 ~2003
975585167780468133710 ~2003
97560865116390225336912 ~2006
975626783195125356710 ~2001
975632579195126515910 ~2001
975633779195126755910 ~2001
975650603195130120710 ~2001
975666599195133319910 ~2001
975674831195134966310 ~2001
975695639195139127910 ~2001
975737687780590149710 ~2003
975738899195147779910 ~2001
9757782492341867797711 ~2004
975792731195158546310 ~2001
9758508731561361396911 ~2003
975886823195177364710 ~2001
976014563195202912710 ~2001
Exponent Prime Factor Digits Year
976018643195203728710 ~2001
976018931195203786310 ~2001
976030043195206008710 ~2001
976063391195212678310 ~2001
976066163195213232710 ~2001
976068001585640800710 ~2002
976068143195213628710 ~2001
976171019195234203910 ~2001
976185181585711108710 ~2002
976215959195243191910 ~2001
976220317585732190310 ~2002
976267417585760450310 ~2002
976273163195254632710 ~2001
976278731195255746310 ~2001
976289681585773808710 ~2002
976323793585794275910 ~2002
976326251195265250310 ~2001
976355123195271024710 ~2001
976358219195271643910 ~2001
976360631195272126310 ~2001
9764056271562249003311 ~2003
976468211195293642310 ~2001
97649863118162874536712 ~2006
976545191195309038310 ~2001
976591691195318338310 ~2001
Home
4.724.182 digits
e-mail
25-04-13