Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
559973483111994696710 ~1999
559974263111994852710 ~1999
559976843111995368710 ~1999
559983401447986720910 ~2001
559990861335994516710 ~2001
559996919111999383910 ~1999
560025863112005172710 ~1999
560034131112006826310 ~1999
560035643112007128710 ~1999
560037911112007582310 ~1999
560079983112015996710 ~1999
560080583112016116710 ~1999
560082179112016435910 ~1999
560102891112020578310 ~1999
560104991112020998310 ~1999
560108737336065242310 ~2001
560122271448097816910 ~2001
560128463112025692710 ~1999
560141399112028279910 ~1999
560174243112034848710 ~1999
560187923112037584710 ~1999
5601899573025025767911 ~2003
560196743112039348710 ~1999
560198531112039706310 ~1999
560229599112045919910 ~1999
Exponent Prime Factor Digits Year
560231123112046224710 ~1999
560233139112046627910 ~1999
560277031560277031110 ~2001
560283239112056647910 ~1999
5602843131344682351311 ~2002
560296393336177835910 ~2001
560298983112059796710 ~1999
560334779112066955910 ~1999
560343323112068664710 ~1999
560356679112071335910 ~1999
560357771112071554310 ~1999
5603614192353517959911 ~2003
560385383112077076710 ~1999
5603905497509233356711 ~2004
560391697336235018310 ~2001
560395763112079152710 ~1999
560406299112081259910 ~1999
560420411112084082310 ~1999
560446319112089263910 ~1999
5604513711008812467911 ~2002
560452537896724059310 ~2002
560459639112091927910 ~1999
5604635695716728403911 ~2004
560476747560476747110 ~2001
560492351112098470310 ~1999
Exponent Prime Factor Digits Year
560494877336296926310 ~2001
560497523112099504710 ~1999
560509123560509123110 ~2001
560514371112102874310 ~1999
560524381896839009710 ~2002
560530801336318480710 ~2001
560548379112109675910 ~1999
560594543112118908710 ~1999
560630977336378586310 ~2001
560650621336390372710 ~2001
560651963112130392710 ~1999
560652023112130404710 ~1999
560692703112138540710 ~1999
5606993531233538576711 ~2002
560726951112145390310 ~1999
560732177336439306310 ~2001
560736359112147271910 ~1999
560740933336444559910 ~2001
560766803112153360710 ~1999
560773331112154666310 ~1999
560784923112156984710 ~1999
560789219112157843910 ~1999
560806283112161256710 ~1999
560844491448675592910 ~2001
560850359112170071910 ~1999
Exponent Prime Factor Digits Year
560862551112172510310 ~1999
560875019112175003910 ~1999
560911033336546619910 ~2001
560919119112183823910 ~1999
560924057448739245710 ~2001
560940379560940379110 ~2001
560943367560943367110 ~2001
560990483112198096710 ~1999
560993159112198631910 ~1999
561006923112201384710 ~1999
561009563112201912710 ~1999
561020483112204096710 ~1999
561031463112206292710 ~1999
561044903112208980710 ~1999
561059651112211930310 ~1999
561059771112211954310 ~1999
561076031448860824910 ~2001
561088343112217668710 ~1999
561114311112222862310 ~1999
561122377336673426310 ~2001
561142213336685327910 ~2001
561144791112228958310 ~1999
561149489785609284710 ~2001
5611724214040441431311 ~2003
561184391112236878310 ~1999
Home
5.157.210 digits
e-mail
25-11-02