Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
941997011188399402310 ~2001
942045557753636445710 ~2003
9420544572826163371111 ~2004
942089651188417930310 ~2001
942137243188427448710 ~2001
942148199188429639910 ~2001
942176951188435390310 ~2001
942180601565308360710 ~2002
942189077565313446310 ~2002
942217739188443547910 ~2001
942283697565370218310 ~2002
9422952412826885723111 ~2004
942312383188462476710 ~2001
942332953565399771910 ~2002
9423361813769344724111 ~2004
942348611188469722310 ~2001
942440171188488034310 ~2001
942450401565470240710 ~2002
942464339188492867910 ~2001
942563519188512703910 ~2001
9425876992262210477711 ~2004
942603671188520734310 ~2001
942610811188522162310 ~2001
9426406132827921839111 ~2004
942642671188528534310 ~2001
Exponent Prime Factor Digits Year
942654059188530811910 ~2001
942722831188544566310 ~2001
942724381565634628710 ~2002
94272924130921519104912 ~2007
9427309311696915675911 ~2003
942780431188556086310 ~2001
942780491188556098310 ~2001
942842903188568580710 ~2001
94285693340542848119112 ~2007
9428616972262868072911 ~2004
942894479188578895910 ~2001
942898919188579783910 ~2001
942926903188585380710 ~2001
942942191188588438310 ~2001
942952163188590432710 ~2001
942970559188594111910 ~2001
942989783188597956710 ~2001
943019459188603891910 ~2001
943051223188610244710 ~2001
943060121754448096910 ~2003
943075439188615087910 ~2001
943089131188617826310 ~2001
943103039188620607910 ~2001
943139579188627915910 ~2001
943148881565889328710 ~2002
Exponent Prime Factor Digits Year
943151171188630234310 ~2001
943206779188641355910 ~2001
943217339188643467910 ~2001
943233329754586663310 ~2003
943237433565942459910 ~2002
943262911943262911110 ~2003
9432723313773089324111 ~2004
943283171188656634310 ~2001
943285463188657092710 ~2001
943288403188657680710 ~2001
943310183188662036710 ~2001
943343587943343587110 ~2003
943384363943384363110 ~2003
943434043943434043110 ~2003
943439017566063410310 ~2002
943482383188696476710 ~2001
943487837566092702310 ~2002
943493423188698684710 ~2001
943498943188699788710 ~2001
943507223188701444710 ~2001
943544857566126914310 ~2002
943546057566127634310 ~2002
943554743188710948710 ~2001
943563821566138292710 ~2002
943567343188713468710 ~2001
Exponent Prime Factor Digits Year
943593509754874807310 ~2003
943647953566188771910 ~2002
943663439188732687910 ~2001
943698491188739698310 ~2001
943734299754987439310 ~2003
943741703188748340710 ~2001
943766963188753392710 ~2001
943801693566281015910 ~2002
9438789892265309573711 ~2004
943981799188796359910 ~2001
9440176932265642463311 ~2004
944056259188811251910 ~2001
944068271188813654310 ~2001
944101019188820203910 ~2001
944103683188820736710 ~2001
944106899188821379910 ~2001
944109143188821828710 ~2001
944136071188827214310 ~2001
944176511188835302310 ~2001
944205853566523511910 ~2002
944243999188848799910 ~2001
944249543188849908710 ~2001
944251681566551008710 ~2002
944311657566586994310 ~2002
944311673566587003910 ~2002
Home
4.724.182 digits
e-mail
25-04-13