Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
530786519106157303910 ~1999
530808713743132198310 ~2001
530821079106164215910 ~1999
530843227530843227110 ~2001
530849699106169939910 ~1999
530850863106170172710 ~1999
530854739106170947910 ~1999
530859551106171910310 ~1999
530861879106172375910 ~1999
530869919106173983910 ~1999
530870423106174084710 ~1999
530890043106178008710 ~1999
530893873318536323910 ~2000
530906633318543979910 ~2000
530911861318547116710 ~2000
530956043106191208710 ~1999
5309597396371516868111 ~2004
530976839106195367910 ~1999
5309808891592942667111 ~2002
5309896494247917192111 ~2003
530995589424796471310 ~2001
530996951424797560910 ~2001
5310141772017853872711 ~2002
531030587955855056710 ~2001
531068243106213648710 ~1999
Exponent Prime Factor Digits Year
531077411106215482310 ~1999
531078761318647256710 ~2000
531083093318649855910 ~2000
531100259106220051910 ~1999
531135433318681259910 ~2000
531145319106229063910 ~1999
531151823106230364710 ~1999
531160739106232147910 ~1999
5311777011593533103111 ~2002
531182777318709666310 ~2000
531198203106239640710 ~1999
531218351106243670310 ~1999
5312357592124943036111 ~2002
5312393814568658676711 ~2003
531250319106250063910 ~1999
531255911106251182310 ~1999
531271903531271903110 ~2001
531292199106258439910 ~1999
531295559106259111910 ~1999
531304097318782458310 ~2000
531306203106261240710 ~1999
531327431106265486310 ~1999
53133256121147035927912 ~2005
531334151106266830310 ~1999
531336863106267372710 ~1999
Exponent Prime Factor Digits Year
531356363106271272710 ~1999
531380461318828276710 ~2000
531383999106276799910 ~1999
5314054672657027335111 ~2003
531419279106283855910 ~1999
5314290771275429784911 ~2002
531441359106288271910 ~1999
531443219106288643910 ~1999
531452723106290544710 ~1999
531458771106291754310 ~1999
531477539106295507910 ~1999
531484273318890563910 ~2000
531504047425203237710 ~2001
531516787850426859310 ~2001
531531683106306336710 ~1999
5315810213295802330311 ~2003
531581399106316279910 ~1999
531586049425268839310 ~2001
531587033318952219910 ~2000
531589697425271757710 ~2001
5316011232232724716711 ~2002
5316187971275885112911 ~2002
531630269425304215310 ~2001
531646919106329383910 ~1999
531652703106330540710 ~1999
Exponent Prime Factor Digits Year
531652921318991752710 ~2000
531674051106334810310 ~1999
531674789744344704710 ~2001
531687311106337462310 ~1999
531709019106341803910 ~1999
531711503106342300710 ~1999
531721103106344220710 ~1999
531744307957139752710 ~2001
5317656231276237495311 ~2002
531767759106353551910 ~1999
531775331425420264910 ~2001
531785069744499096710 ~2001
531789001850862401710 ~2001
531791231106358246310 ~1999
531792983106358596710 ~1999
531805343106361068710 ~1999
531820199106364039910 ~1999
531822419106364483910 ~1999
531828299106365659910 ~1999
531837263106367452710 ~1999
531843131106368626310 ~1999
531848279106369655910 ~1999
531855173319113103910 ~2000
531887879106377575910 ~1999
531895933319137559910 ~2000
Home
5.157.210 digits
e-mail
25-11-02