Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
871836131174367226310 ~2001
871845239174369047910 ~2001
871846571697477256910 ~2002
871865363174373072710 ~2001
871866563174373312710 ~2001
871869959174373991910 ~2001
871877411174375482310 ~2001
871891619697513295310 ~2002
8719632911569533923911 ~2003
871990811174398162310 ~2001
872033663174406732710 ~2001
872042351174408470310 ~2001
8720773311569739195911 ~2003
872102519697682015310 ~2002
8721766374884189167311 ~2004
872180591174436118310 ~2001
872183519174436703910 ~2001
8722067632267737583911 ~2004
872212123872212123110 ~2003
872250527697800421710 ~2002
8723097596455092216711 ~2005
872322443174464488710 ~2001
872332283174466456710 ~2001
872334503174466900710 ~2001
87233766711863792271312 ~2005
Exponent Prime Factor Digits Year
872339339174467867910 ~2001
872348857523409314310 ~2002
872458799174491759910 ~2001
872465879174493175910 ~2001
872486711174497342310 ~2001
872498171174499634310 ~2001
872515823174503164710 ~2001
872532119174506423910 ~2001
872622011174524402310 ~2001
872666519174533303910 ~2001
8726670491919867507911 ~2003
872695823174539164710 ~2001
8727006172618101851111 ~2004
872723003174544600710 ~2001
872725457698180365710 ~2002
8727310334712747578311 ~2004
872731763174546352710 ~2001
872733863174546772710 ~2001
872761091174552218310 ~2001
872778779174555755910 ~2001
872834243174566848710 ~2001
8728534792793131132911 ~2004
872859899174571979910 ~2001
872976491174595298310 ~2001
873019331174603866310 ~2001
Exponent Prime Factor Digits Year
873028111873028111110 ~2003
873035291174607058310 ~2001
873037799174607559910 ~2001
873060563174612112710 ~2001
873067763174613552710 ~2001
873068699174613739910 ~2001
873075743174615148710 ~2001
873106823174621364710 ~2001
873116009698492807310 ~2002
873118357523871014310 ~2002
873118643174623728710 ~2001
873121211174624242310 ~2001
873135803174627160710 ~2001
873160259174632051910 ~2001
873167891174633578310 ~2001
873170423174634084710 ~2001
873174959174634991910 ~2001
8731834731222456862311 ~2003
873194051174638810310 ~2001
873220343174644068710 ~2001
8732517492095804197711 ~2003
873332363174666472710 ~2001
873333733524000239910 ~2002
873335009698668007310 ~2002
873341411174668282310 ~2001
Exponent Prime Factor Digits Year
873370343174674068710 ~2001
873376739174675347910 ~2001
873379163174675832710 ~2001
873384203174676840710 ~2001
873437083873437083110 ~2003
873503669698802935310 ~2002
8735396332620618899111 ~2004
873546203174709240710 ~2001
873573023174714604710 ~2001
873575459174715091910 ~2001
873581003174716200710 ~2001
873596099698876879310 ~2002
873596651174719330310 ~2001
873644099174728819910 ~2001
873656713524194027910 ~2002
873663971174732794310 ~2001
873690479174738095910 ~2001
873759899174751979910 ~2001
873780311174756062310 ~2001
873794723174758944710 ~2001
873818171174763634310 ~2001
8738630172621589051111 ~2004
873894491174778898310 ~2001
8738969231398235076911 ~2003
873901271174780254310 ~2001
Home
4.724.182 digits
e-mail
25-04-13