Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
849156073509493643910 ~2002
849241219849241219110 ~2002
8492436133396974452111 ~2004
8492956132547886839111 ~2004
8493024232717767753711 ~2004
8493241731189053842311 ~2003
849343811169868762310 ~2001
8493632692717962460911 ~2004
849412691169882538310 ~2001
849416219169883243910 ~2001
8494549731189236962311 ~2003
849477911169895582310 ~2001
849505031169901006310 ~2001
849535223169907044710 ~2001
849548911849548911110 ~2002
849553079169910615910 ~2001
849558719169911743910 ~2001
849602003169920400710 ~2001
849617663169923532710 ~2001
849624299169924859910 ~2001
849631031169926206310 ~2001
849634223169926844710 ~2001
849651457509790874310 ~2002
849657091849657091110 ~2002
849657443169931488710 ~2001
Exponent Prime Factor Digits Year
849658697509795218310 ~2002
849688403169937680710 ~2001
849698123169939624710 ~2001
849717119169943423910 ~2001
849728339169945667910 ~2001
849769331169953866310 ~2001
849787811169957562310 ~2001
849855791169971158310 ~2001
849861563169972312710 ~2001
849877883169975576710 ~2001
849899591169979918310 ~2001
849916337679933069710 ~2002
8499392831359902852911 ~2003
8499486911359917905711 ~2003
849953459169990691910 ~2001
849993299169998659910 ~2001
8500180874080086817711 ~2004
850022843170004568710 ~2001
850026179170005235910 ~2001
850037173510022303910 ~2002
850047059170009411910 ~2001
8500550331190077046311 ~2003
850065803170013160710 ~2001
850075763170015152710 ~2001
850083803170016760710 ~2001
Exponent Prime Factor Digits Year
8500889832890302542311 ~2004
850096241680076992910 ~2002
850097879170019575910 ~2001
850125131170025026310 ~2001
850221941510133164710 ~2002
850259951170051990310 ~2001
850262291170052458310 ~2001
850282679170056535910 ~2001
850319819170063963910 ~2001
850357223170071444710 ~2001
850380143170076028710 ~2001
8504030091190564212711 ~2003
8504104194252052095111 ~2004
850411013510246607910 ~2002
850419131170083826310 ~2001
850444577510266746310 ~2002
850445231170089046310 ~2001
850452193510271315910 ~2002
850492523170098504710 ~2001
850528643170105728710 ~2001
850673363170134672710 ~2001
850678919170135783910 ~2001
850693463170138692710 ~2001
850693799170138759910 ~2001
850700293510420175910 ~2002
Exponent Prime Factor Digits Year
850740791170148158310 ~2001
850748891170149778310 ~2001
850769123170153824710 ~2001
850784201680627360910 ~2002
850903451170180690310 ~2001
850948391170189678310 ~2001
850961399170192279910 ~2001
850976363170195272710 ~2001
8510095396127268680911 ~2005
851019359170203871910 ~2001
851038211170207642310 ~2001
851098379170219675910 ~2001
851108651170221730310 ~2001
851137423851137423110 ~2002
8511468672042752480911 ~2003
851176993510706195910 ~2002
85120848112087160430312 ~2005
851217491170243498310 ~2001
851241451851241451110 ~2002
851287991170257598310 ~2001
851304719170260943910 ~2001
851318771170263754310 ~2001
851372771170274554310 ~2001
8514282291191999520711 ~2003
8514406131192016858311 ~2003
Home
4.724.182 digits
e-mail
25-04-13