Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4745731199491462399 ~1999
4745776799491553599 ~1999
474584567379667653710 ~2000
4745951399491902799 ~1999
474596909379677527310 ~2000
4746081774081630322311 ~2003
4746123119492246239 ~1999
4746145319492290639 ~1999
4746146399492292799 ~1999
4746162119492324239 ~1999
4746239519492479039 ~1999
4746241199492482399 ~1999
474633629664487080710 ~2001
474650117284790070310 ~2000
4746502439493004879 ~1999
4746688799493377599 ~1999
4746700439493400879 ~1999
474691439379753151310 ~2000
4746949199493898399 ~1999
4747144199494288399 ~1999
4747254239494508479 ~1999
474727531474727531110 ~2000
474729679474729679110 ~2000
474729701379783760910 ~2000
4747322399494644799 ~1999
Exponent Prime Factor Digits Year
4747452599494905199 ~1999
4747453199494906399 ~1999
474747277284848366310 ~2000
4747480199494960399 ~1999
4747507799495015599 ~1999
4748003639496007279 ~1999
474803137284881882310 ~2000
4748106599496213199 ~1999
474813617284888170310 ~2000
474834307474834307110 ~2000
4748377199496754399 ~1999
474839627379871701710 ~2000
4748585999497171999 ~1999
474895957284937574310 ~2000
474897209379917767310 ~2000
474898841284939304710 ~2000
474905477664867667910 ~2001
474910481379928384910 ~2000
474914753284948851910 ~2000
4749260519498521039 ~1999
4749309839498619679 ~1999
4749396839498793679 ~1999
4749485999498971999 ~1999
4749768719499537439 ~1999
4749807719499615439 ~1999
Exponent Prime Factor Digits Year
474981973284989183910 ~2000
4749902039499804079 ~1999
4749904799499809599 ~1999
4750063799500127599 ~1999
475009147760014635310 ~2001
475025981380020784910 ~2000
4750334639500669279 ~1999
4750343039500686079 ~1999
475050619475050619110 ~2000
4750563119501126239 ~1999
4750729199501458399 ~1999
4750761599501523199 ~1999
475080121285048072710 ~2000
4750882919501765839 ~1999
4750944239501888479 ~1999
4750992599501985199 ~1999
475108561760173697710 ~2001
4751348999502697999 ~1999
4751372519502745039 ~1999
4751405639502811279 ~1999
4751435519502871039 ~1999
4751490719502981439 ~1999
475151381380121104910 ~2000
4751555639503111279 ~1999
4751590439503180879 ~1999
Exponent Prime Factor Digits Year
4751708039503416079 ~1999
4751731199503462399 ~1999
475180793285108475910 ~2000
4751824391615620292711 ~2002
4751840639503681279 ~1999
475185299380148239310 ~2000
4751891039503782079 ~1999
475193767760310027310 ~2001
475197197285118318310 ~2000
475206601285123960710 ~2000
4752072839504145679 ~1999
4752136199504272399 ~1999
4752208919504417839 ~1999
4752398399504796799 ~1999
4752791639505583279 ~1999
4752795839505591679 ~1999
475281991760451185710 ~2001
4752888239505776479 ~1999
4752914519505829039 ~1999
475306081285183648710 ~2000
475311107380248885710 ~2000
4753153919506307839 ~1999
4753333439506666879 ~1999
475333423475333423110 ~2000
4753379039506758079 ~1999
Home
5.157.210 digits
e-mail
25-11-02