Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
778766123155753224710 ~2000
778768439155753687910 ~2000
778796861467278116710 ~2002
778806863155761372710 ~2000
7788193371090347071911 ~2003
778820639155764127910 ~2000
778821269623057015310 ~2002
778822043155764408710 ~2000
7788388135607639453711 ~2004
778862159155772431910 ~2000
7788699792648157928711 ~2003
778876223155775244710 ~2000
778911361467346816710 ~2002
778947311155789462310 ~2000
778966343155793268710 ~2000
778974023155794804710 ~2000
779025983155805196710 ~2000
779058431155811686310 ~2000
779062811623250248910 ~2002
779106791155821358310 ~2000
779117351155823470310 ~2000
779122871155824574310 ~2000
779129579155825915910 ~2000
7791487631246638020911 ~2003
779149439155829887910 ~2000
Exponent Prime Factor Digits Year
779152373467491423910 ~2002
779157383155831476710 ~2000
779179031155835806310 ~2000
7791898691714217711911 ~2003
779199959155839991910 ~2000
779208383155841676710 ~2000
779208389623366711310 ~2002
779220119155844023910 ~2000
779236963779236963110 ~2002
779247299155849459910 ~2000
779247701623398160910 ~2002
779249677467549806310 ~2002
779273533467564119910 ~2002
779283959155856791910 ~2000
779288753467573251910 ~2002
779288963155857792710 ~2000
7792932671246869227311 ~2003
779323763155864752710 ~2000
779336483155867296710 ~2000
779361851155872370310 ~2000
779407679155881535910 ~2000
779414687623531749710 ~2002
779447423155889484710 ~2000
779483951155896790310 ~2000
779501531155900306310 ~2000
Exponent Prime Factor Digits Year
779502239155900447910 ~2000
779564221467738532710 ~2002
779577839155915567910 ~2000
779619397467771638310 ~2002
779639879155927975910 ~2000
779650811623720648910 ~2002
779660699155932139910 ~2000
779668859155933771910 ~2000
779668919155933783910 ~2000
7797080471247532875311 ~2003
779728679155945735910 ~2000
779742787779742787110 ~2002
779747411155949482310 ~2000
779764943155952988710 ~2000
779765099155953019910 ~2000
779808791155961758310 ~2000
779825161467895096710 ~2002
779852291155970458310 ~2000
7798625531247780084911 ~2003
779891639155978327910 ~2000
779896631623917304910 ~2002
779897819155979563910 ~2000
779900711155980142310 ~2000
779935619155987123910 ~2000
779952623155990524710 ~2000
Exponent Prime Factor Digits Year
779967323155993464710 ~2000
779968979155993795910 ~2000
779970553467982331910 ~2002
779993051623994440910 ~2002
780059407780059407110 ~2002
780086291156017258310 ~2000
7801054371092147611911 ~2003
780127619156025523910 ~2000
780141359156028271910 ~2000
780144191156028838310 ~2000
780224789624179831310 ~2002
780230663156046132710 ~2000
780231383156046276710 ~2000
780233711156046742310 ~2000
780327491156065498310 ~2000
780336311156067262310 ~2000
780367631156073526310 ~2000
780374351156074870310 ~2000
780377891156075578310 ~2000
780382139156076427910 ~2000
7803935773121574308111 ~2004
780411323156082264710 ~2000
780436451156087290310 ~2000
7804530311248724849711 ~2003
780507719624406175310 ~2002
Home
4.724.182 digits
e-mail
25-04-13