Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
75174937727664377073712 ~2006
751751249601400999310 ~2002
751825619150365123910 ~2000
751844441451106664710 ~2001
751844777451106866310 ~2001
751899059150379811910 ~2000
751908383150381676710 ~2000
7519379331804651039311 ~2003
751965191150393038310 ~2000
75199459911580716824712 ~2005
752011619150402323910 ~2000
7520166232406453193711 ~2003
752034917451220950310 ~2001
7520586476016469176111 ~2004
752061671150412334310 ~2000
752078279150415655910 ~2000
752078891150415778310 ~2000
752182283150436456710 ~2000
752223977601779181710 ~2002
752234123150446824710 ~2000
752258603150451720710 ~2000
752316179150463235910 ~2000
752324063150464812710 ~2000
752355491150471098310 ~2000
752356103150471220710 ~2000
Exponent Prime Factor Digits Year
752389091150477818310 ~2000
752425031150485006310 ~2000
752428799601943039310 ~2002
752430179150486035910 ~2000
752481563150496312710 ~2000
752482091150496418310 ~2000
752485523150497104710 ~2000
752490961451494576710 ~2001
752511719150502343910 ~2000
752519987602015989710 ~2002
752544713451526827910 ~2001
752589037451553422310 ~2001
752641871150528374310 ~2000
7526445373010578148111 ~2004
7526455211655820146311 ~2003
752694863150538972710 ~2000
7527097812258129343111 ~2003
752736221451641732710 ~2001
752751011150550202310 ~2000
752774051150554810310 ~2000
752782991150556598310 ~2000
752783051150556610310 ~2000
752789099150557819910 ~2000
752827259150565451910 ~2000
752837951150567590310 ~2000
Exponent Prime Factor Digits Year
752854391150570878310 ~2000
752860331150572066310 ~2000
752869343150573868710 ~2000
752873903150574780710 ~2000
752878843752878843110 ~2002
752883359150576671910 ~2000
752905793451743475910 ~2001
752925149602340119310 ~2002
7529674973614243985711 ~2004
7529760171054166423911 ~2002
752981617451788970310 ~2001
7529963471807191232911 ~2003
753083939150616787910 ~2000
753107363150621472710 ~2000
753135701451881420710 ~2001
7531464892410068764911 ~2003
753196583150639316710 ~2000
753283871150656774310 ~2000
7532845371054598351911 ~2002
753293501451976100710 ~2001
753307237451984342310 ~2001
753307559150661511910 ~2000
753328721602662976910 ~2002
753379381452027628710 ~2001
753384839150676967910 ~2000
Exponent Prime Factor Digits Year
7534078393013631356111 ~2004
753419951150683990310 ~2000
753481931150696386310 ~2000
753559259150711851910 ~2000
753577523150715504710 ~2000
753609383150721876710 ~2000
753610199150722039910 ~2000
753633971150726794310 ~2000
753646139150729227910 ~2000
753674543150734908710 ~2000
753677591150735518310 ~2000
753690137452214082310 ~2001
753691553452214931910 ~2001
753695879150739175910 ~2000
753707881452224728710 ~2001
753708443150741688710 ~2000
753723923150744784710 ~2000
753762059150752411910 ~2000
753780617452268370310 ~2001
753785971753785971110 ~2002
753787043150757408710 ~2000
753788663150757732710 ~2000
753795397452277238310 ~2001
753798341452279004710 ~2001
753804431150760886310 ~2000
Home
4.724.182 digits
e-mail
25-04-13