Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
675479639135095927910 ~2000
675491977405295186310 ~2001
675513263135102652710 ~2000
675526781405316068710 ~2001
675577163135115432710 ~2000
675606983135121396710 ~2000
675620051135124010310 ~2000
675624023135124804710 ~2000
675626531135125306310 ~2000
6756298933648401422311 ~2003
675640739135128147910 ~2000
675662257405397354310 ~2001
675684851135136970310 ~2000
675685259135137051910 ~2000
675685739135137147910 ~2000
675692519135138503910 ~2000
675696683135139336710 ~2000
675704663135140932710 ~2000
675707581405424548710 ~2001
6757115391216280770311 ~2002
675718243675718243110 ~2002
6757575671216363620711 ~2002
675776609540621287310 ~2001
675792239540633791310 ~2001
675798323135159664710 ~2000
Exponent Prime Factor Digits Year
675828653405497191910 ~2001
675839639135167927910 ~2000
675865871135173174310 ~2000
6758668811081387009711 ~2002
675952231675952231110 ~2002
675960479135192095910 ~2000
675975731135195146310 ~2000
675984563135196912710 ~2000
676002533946403546310 ~2002
6760196232704078492111 ~2003
676065161405639096710 ~2001
676101539135220307910 ~2000
676155899135231179910 ~2000
676173611135234722310 ~2000
676191569946668196710 ~2002
676211407676211407110 ~2002
676213283135242656710 ~2000
676235363135247072710 ~2000
676265783135253156710 ~2000
676271471135254294310 ~2000
676273883135254776710 ~2000
676292321405775392710 ~2001
676298303135259660710 ~2000
676307273405784363910 ~2001
676313333405787999910 ~2001
Exponent Prime Factor Digits Year
676323803135264760710 ~2000
676350131135270026310 ~2000
676352003135270400710 ~2000
676361377405816826310 ~2001
676396163135279232710 ~2000
676468451135293690310 ~2000
676479733405887839910 ~2001
676500743135300148710 ~2000
676534619135306923910 ~2000
676581023135316204710 ~2000
676618417405971050310 ~2001
676621973405973183910 ~2001
676645019135329003910 ~2000
676657439541325951310 ~2001
676662923135332584710 ~2000
676675619135335123910 ~2000
676693271135338654310 ~2000
676694833406016899910 ~2001
676728683135345736710 ~2000
676729451135345890310 ~2000
676735931135347186310 ~2000
676751711135350342310 ~2000
6767629972030288991111 ~2003
6767689213113137036711 ~2003
6767717832301024062311 ~2003
Exponent Prime Factor Digits Year
676823911676823911110 ~2002
676824143135364828710 ~2000
676824983135364996710 ~2000
676828511135365702310 ~2000
676835531135367106310 ~2000
676851341406110804710 ~2001
6768715671624491760911 ~2003
676878803135375760710 ~2000
676898003135379600710 ~2000
676901651135380330310 ~2000
676932341541545872910 ~2001
6769388112843143006311 ~2003
676977803135395560710 ~2000
676981703135396340710 ~2000
676990343135398068710 ~2000
6769924131624781791311 ~2003
676992517406195510310 ~2001
6770004791624801149711 ~2003
677019263135403852710 ~2000
677039351135407870310 ~2000
677056283135411256710 ~2000
677072471135414494310 ~2000
677090159135418031910 ~2000
677094359541675487310 ~2001
6770959331489611052711 ~2003
Home
4.724.182 digits
e-mail
25-04-13