Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
617157143123431428710 ~2000
617172203123434440710 ~2000
617172779123434555910 ~2000
617174003123434800710 ~2000
6171793191974973820911 ~2003
617180939123436187910 ~2000
617184731123436946310 ~2000
617207999123441599910 ~2000
617229719123445943910 ~2000
617252959617252959110 ~2001
617254523123450904710 ~2000
617254679123450935910 ~2000
617265251123453050310 ~2000
617303579123460715910 ~2000
617310971493848776910 ~2001
617317691123463538310 ~2000
617347691123469538310 ~2000
617374973370424983910 ~2001
617388301370432980710 ~2001
617389963987823940910 ~2002
617393831123478766310 ~2000
617394671123478934310 ~2000
617411351123482270310 ~2000
617417303123483460710 ~2000
617431889493945511310 ~2001
Exponent Prime Factor Digits Year
617453951123490790310 ~2000
617474243123494848710 ~2000
617484431493987544910 ~2001
617521259123504251910 ~2000
617533351617533351110 ~2001
617535613370521367910 ~2001
617558999494047199310 ~2001
617565581370539348710 ~2001
6175736591111632586311 ~2002
617589359123517871910 ~2000
6175909973458509583311 ~2003
617615597370569358310 ~2001
617632859123526571910 ~2000
617646671123529334310 ~2000
617694661370616796710 ~2001
617733731123546746310 ~2000
617764481370658688710 ~2001
617793023123558604710 ~2000
617796863123559372710 ~2000
617805731123561146310 ~2000
617812931123562586310 ~2000
617838659123567731910 ~2000
617846081370707648710 ~2001
617867111123573422310 ~2000
617870639123574127910 ~2000
Exponent Prime Factor Digits Year
617873339123574667910 ~2000
617894603123578920710 ~2000
617913539123582707910 ~2000
617926271123585254310 ~2000
617929079123585815910 ~2000
617947091123589418310 ~2000
617947931123589586310 ~2000
617974751123594950310 ~2000
6180099472966447745711 ~2003
618011951123602390310 ~2000
618014239618014239110 ~2001
618047411123609482310 ~2000
618060539123612107910 ~2000
618072443123614488710 ~2000
618091163123618232710 ~2000
618096593370857955910 ~2001
618101279123620255910 ~2000
618104471123620894310 ~2000
618107111123621422310 ~2000
618136019123627203910 ~2000
618138023123627604710 ~2000
6181424391483541853711 ~2002
618170159123634031910 ~2000
618176579123635315910 ~2000
618190019123638003910 ~2000
Exponent Prime Factor Digits Year
618197999123639599910 ~2000
618198299123639659910 ~2000
618204599123640919910 ~2000
618213779123642755910 ~2000
618217511123643502310 ~2000
618227891123645578310 ~2000
618243911123648782310 ~2000
618257257370954354310 ~2001
618265859123653171910 ~2000
618276779123655355910 ~2000
618292583123658516710 ~2000
618312011123662402310 ~2000
618320581370992348710 ~2001
618321659123664331910 ~2000
618341723123668344710 ~2000
618342079618342079110 ~2001
6183459291855037787111 ~2003
618371051123674210310 ~2000
618373823123674764710 ~2000
618381119123676223910 ~2000
618404093371042455910 ~2001
618434171123686834310 ~2000
6184356071484245456911 ~2002
618438959123687791910 ~2000
618442271123688454310 ~2000
Home
4.724.182 digits
e-mail
25-04-13