Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
5302186071378568378311 ~2002
530243723106048744710 ~1999
530250431106050086310 ~1999
530271971106054394310 ~1999
530273351106054670310 ~1999
530287151106057430310 ~1999
530292599106058519910 ~1999
530296103106059220710 ~1999
530309243106061848710 ~1999
530318219106063643910 ~1999
530335271106067054310 ~1999
530343419106068683910 ~1999
530347151106069430310 ~1999
5303594112121437644111 ~2002
530366911848587057710 ~2001
530368961424295168910 ~2001
530374571106074914310 ~1999
530377559106075511910 ~1999
530432159106086431910 ~1999
530432711106086542310 ~1999
530434217318260530310 ~2000
530442623106088524710 ~1999
530442961318265776710 ~2000
530443267530443267110 ~2001
530454143106090828710 ~1999
Exponent Prime Factor Digits Year
530457971106091594310 ~1999
5304936411591480923111 ~2002
530506451106101290310 ~1999
530508299106101659910 ~1999
530513771106102754310 ~1999
530514983106102996710 ~1999
530527883106105576710 ~1999
530531279424425023310 ~2001
530536757424429405710 ~2001
530540099106108019910 ~1999
530545199106109039910 ~1999
530565611955018099910 ~2001
530584991106116998310 ~1999
530606651424485320910 ~2001
530621543106124308710 ~1999
5306308396898200907111 ~2004
5306367831273528279311 ~2002
530645543106129108710 ~1999
530664371106132874310 ~1999
530670347424536277710 ~2001
530671811106134362310 ~1999
530673911106134782310 ~1999
530677859106135571910 ~1999
530681581318408948710 ~2000
530706791106141358310 ~1999
Exponent Prime Factor Digits Year
530745851106149170310 ~1999
530751839106150367910 ~1999
530755103106151020710 ~1999
530762137318457282310 ~2000
530786519106157303910 ~1999
530808713743132198310 ~2001
530821079106164215910 ~1999
530843227530843227110 ~2001
530849699106169939910 ~1999
530850863106170172710 ~1999
530854739106170947910 ~1999
530859551106171910310 ~1999
530861879106172375910 ~1999
530869919106173983910 ~1999
530870423106174084710 ~1999
530890043106178008710 ~1999
530893873318536323910 ~2000
530906633318543979910 ~2000
530911861318547116710 ~2000
530956043106191208710 ~1999
530976839106195367910 ~1999
5309896494247917192111 ~2003
530995589424796471310 ~2001
530996951424797560910 ~2001
531030587955855056710 ~2001
Exponent Prime Factor Digits Year
531068243106213648710 ~1999
531078761318647256710 ~2000
531083093318649855910 ~2000
531135433318681259910 ~2000
531145319106229063910 ~1999
531151823106230364710 ~1999
531160739106232147910 ~1999
5311777011593533103111 ~2002
531182777318709666310 ~2000
531198203106239640710 ~1999
531218351106243670310 ~1999
5312357592124943036111 ~2002
5312393814568658676711 ~2003
531250319106250063910 ~1999
531255911106251182310 ~1999
531271903531271903110 ~2001
531292199106258439910 ~1999
531295559106259111910 ~1999
531304097318782458310 ~2000
531306203106261240710 ~1999
531327431106265486310 ~1999
53133256121147035927912 ~2005
531334151106266830310 ~1999
531336863106267372710 ~1999
531356363106271272710 ~1999
Home
4.724.182 digits
e-mail
25-04-13