Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
509171111101834222310 ~1999
509184757814695611310 ~2001
509186939101837387910 ~1999
509190191101838038310 ~1999
509197043101839408710 ~1999
509204099101840819910 ~1999
509204963101840992710 ~1999
509226701407381360910 ~2000
509233379101846675910 ~1999
509236943101847388710 ~1999
509256311101851262310 ~1999
509293619101858723910 ~1999
5093105531222345327311 ~2002
509313719407450975310 ~2000
5093260931120517404711 ~2002
509327183101865436710 ~1999
509332331101866466310 ~1999
50934068336672529176112 ~2005
509357759101871551910 ~1999
509363411101872682310 ~1999
509378357305627014310 ~2000
509386949407509559310 ~2000
509388179101877635910 ~1999
509390963101878192710 ~1999
509395151101879030310 ~1999
Exponent Prime Factor Digits Year
509397989713157184710 ~2001
509402759101880551910 ~1999
509421551101884310310 ~1999
509441519101888303910 ~1999
509443463101888692710 ~1999
5094468011120782962311 ~2002
509461919101892383910 ~1999
509465113305679067910 ~2000
509482997407586397710 ~2000
509506703101901340710 ~1999
509530121407624096910 ~2000
509539571101907914310 ~1999
509549171101909834310 ~1999
509551597305730958310 ~2000
5095678932038271572111 ~2002
509586817305752090310 ~2000
509589149713424808710 ~2001
509623511101924702310 ~1999
509626441305775864710 ~2000
509659019101931803910 ~1999
509662343101932468710 ~1999
509676059101935211910 ~1999
509682359101936471910 ~1999
509703143101940628710 ~1999
509714171101942834310 ~1999
Exponent Prime Factor Digits Year
509715191101943038310 ~1999
509717671815548273710 ~2001
509733239101946647910 ~1999
509757623101951524710 ~1999
509777519101955503910 ~1999
5097962112039184844111 ~2002
509823131101964626310 ~1999
509832623101966524710 ~1999
509866859101973371910 ~1999
509880977713833367910 ~2001
509897539917815570310 ~2001
509917511101983502310 ~1999
5099290518260850626311 ~2004
509936201305961720710 ~2000
509953799101990759910 ~1999
5099768691937912102311 ~2002
509987111101997422310 ~1999
509988971101997794310 ~1999
510008651102001730310 ~1999
510021899102004379910 ~1999
510047771102009554310 ~1999
510053239510053239110 ~2001
5100583132754314890311 ~2003
5100631392142265183911 ~2002
510069299102013859910 ~1999
Exponent Prime Factor Digits Year
5100846372040338548111 ~2002
510103703102020740710 ~1999
510109097408087277710 ~2000
510110173306066103910 ~2000
510126923102025384710 ~1999
510127907408102325710 ~2000
510140531102028106310 ~1999
510156299102031259910 ~1999
510170933306102559910 ~2000
510179693306107815910 ~2000
510192533306115519910 ~2000
510197393306118435910 ~2000
510216191102043238310 ~1999
510217451102043490310 ~1999
510223453306134071910 ~2000
510228899102045779910 ~1999
510245083510245083110 ~2001
510254621306152772710 ~2000
510258821306155292710 ~2000
510282131102056426310 ~1999
510288203102057640710 ~1999
510304799102060959910 ~1999
510312059102062411910 ~1999
510318217306190930310 ~2000
510331421408265136910 ~2000
Home
4.724.182 digits
e-mail
25-04-13