Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
504285599100857119910 ~1999
504297539100859507910 ~1999
504298439100859687910 ~1999
504307889706031044710 ~2001
504317039100863407910 ~1999
504322271100864454310 ~1999
504331081302598648710 ~2000
504336803100867360710 ~1999
504341099907813978310 ~2001
504352703100870540710 ~1999
504366491100873298310 ~1999
504382643100876528710 ~1999
504395123100879024710 ~1999
504403439100880687910 ~1999
504405037302643022310 ~2000
504412679100882535910 ~1999
504413831100882766310 ~1999
504427139100885427910 ~1999
504429371100885874310 ~1999
504442091100888418310 ~1999
504470831100894166310 ~1999
504489053302693431910 ~2000
504494723100898944710 ~1999
504521483100904296710 ~1999
504526343100905268710 ~1999
Exponent Prime Factor Digits Year
504534323100906864710 ~1999
504543311100908662310 ~1999
504572437302743462310 ~2000
504575783100915156710 ~1999
504582359100916471910 ~1999
5045932491513779747111 ~2002
504593723100918744710 ~1999
5046094931110140884711 ~2002
504623303100924660710 ~1999
504623543100924708710 ~1999
504630359100926071910 ~1999
5046420912926924127911 ~2003
504696121302817672710 ~2000
504729443100945888710 ~1999
504762431100952486310 ~1999
504787583100957516710 ~1999
504825059100965011910 ~1999
504831839100966367910 ~1999
504847823100969564710 ~1999
504849491100969898310 ~1999
504862031100972406310 ~1999
504869303100973860710 ~1999
504884531100976906310 ~1999
5048986611514695983111 ~2002
504901333302940799910 ~2000
Exponent Prime Factor Digits Year
5049037333231383891311 ~2003
504907961302944776710 ~2000
504910403100982080710 ~1999
504912371100982474310 ~1999
504917279100983455910 ~1999
504939971100987994310 ~1999
504955043100991008710 ~1999
504956339100991267910 ~1999
504967817403974253710 ~2000
504968591100993718310 ~1999
504978671100995734310 ~1999
505000103101000020710 ~1999
505011791101002358310 ~1999
505018859101003771910 ~1999
505038617303023170310 ~2000
5050484033636348501711 ~2003
505050067505050067110 ~2001
505055267404044213710 ~2000
505060379101012075910 ~1999
505067483101013496710 ~1999
505068737404054989710 ~2000
505085771101017154310 ~1999
505089419101017883910 ~1999
505101071101020214310 ~1999
505106093303063655910 ~2000
Exponent Prime Factor Digits Year
505119973808191956910 ~2001
505164059101032811910 ~1999
505165957808265531310 ~2001
5051663291111365923911 ~2002
505169123101033824710 ~1999
505172819101034563910 ~1999
505174391101034878310 ~1999
505180163101036032710 ~1999
505191119101038223910 ~1999
505205777303123466310 ~2000
505207201303124320710 ~2000
505216667404173333710 ~2000
505249573303149743910 ~2000
505252211404201768910 ~2000
505259603101051920710 ~1999
505292261404233808910 ~2000
505307531101061506310 ~1999
505309163101061832710 ~1999
505314119101062823910 ~1999
5053207191617026300911 ~2002
50533504313340845135312 ~2004
505355017303213010310 ~2000
505422761303253656710 ~2000
505447703101089540710 ~1999
505449881303269928710 ~2000
Home
4.724.182 digits
e-mail
25-04-13