Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
359459567287567653710 ~1999
359466509287573207310 ~1999
359494241287595392910 ~1999
3595022637190045279 ~1998
3595048917190097839 ~1998
359511617503316263910 ~2000
359517077287613661710 ~1999
3595178397190356799 ~1998
3595219317190438639 ~1998
359531353215718811910 ~1999
3595564797191129599 ~1998
3595671117191342239 ~1998
3595682397191364799 ~1998
359582137215749282310 ~1999
359584919287667935310 ~1999
3596203797192407599 ~1998
359622581215773548710 ~1999
359645773215787463910 ~1999
3596500071726320033711 ~2001
359656091287724872910 ~1999
3596616237193232479 ~1998
3596761437193522879 ~1998
359685737503560031910 ~2000
359694319359694319110 ~2000
3596957517193915039 ~1998
Exponent Prime Factor Digits Year
359704937287763949710 ~1999
3597082437194164879 ~1998
359711207287768965710 ~1999
3597192597194385199 ~1998
3597250317194500639 ~1998
3597298197194596399 ~1998
359742001215845200710 ~1999
3597452997194905999 ~1998
359751449287801159310 ~1999
3597578997195157999 ~1998
359776999359776999110 ~2000
3597772797195545599 ~1998
3597840117195680239 ~1998
359797421215878452710 ~1999
3598013997196027999 ~1998
3598197117196394239 ~1998
3598293117196586239 ~1998
3598306317196612639 ~1998
3598676037197352079 ~1998
359890733215934439910 ~1999
3598928997197857999 ~1998
3599062191511606119911 ~2001
3599071092591331184911 ~2002
3599631717199263439 ~1998
3599792997199585999 ~1998
Exponent Prime Factor Digits Year
3599856837199713679 ~1998
3599893197199786399 ~1998
3599924637199849279 ~1998
359992681215995608710 ~1999
3599934237199868479 ~1998
360001459648002626310 ~2000
3600027597200055199 ~1998
3600049437200098879 ~1998
3600144717200289439 ~1998
360019501216011700710 ~1999
3600230637200461279 ~1998
3600245037200490079 ~1998
360028477216017086310 ~1999
3600295317200590639 ~1998
3600437637200875279 ~1998
3600527031152168649711 ~2001
3600636117201272239 ~1998
3600677517201355039 ~1998
3600703917201407839 ~1998
3600790197201580399 ~1998
3600811917201623839 ~1998
36008864931111659273712 ~2004
3600928197201856399 ~1998
3601012991224344416711 ~2001
360140773216084463910 ~1999
Exponent Prime Factor Digits Year
3601467717202935439 ~1998
360157451288125960910 ~1999
3601624437203248879 ~1998
3601848237203696479 ~1998
360188657864452776910 ~2000
3601944597203889199 ~1998
3602072517204145039 ~1998
3602226837204453679 ~1998
360227401216136440710 ~1999
3602355237204710479 ~1998
3602356797204713599 ~1998
3602511597205023199 ~1998
360253093216151855910 ~1999
360258317216154990310 ~1999
3602616837205233679 ~1998
3602912037205824079 ~1998
3602944797205889599 ~1998
360303869288243095310 ~1999
3603039597206079199 ~1998
3603053997206107999 ~1998
3603288837206577679 ~1998
360358543864860503310 ~2000
360362819288290255310 ~1999
360377621216226572710 ~1999
3603835317207670639 ~1998
Home
4.903.097 digits
e-mail
25-07-08