Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2697034435394068879 ~1997
269703947701230262310 ~2000
269713841161828304710 ~1998
2697161771078864708111 ~2000
2697173515394347039 ~1997
2697189595394379199 ~1997
2697216595394433199 ~1997
2697248635394497279 ~1997
2697267715394535439 ~1997
269731453161838871910 ~1998
269733173161839903910 ~1998
2697438235394876479 ~1997
269754041215803232910 ~1998
269761621161856972710 ~1998
2697651235395302479 ~1997
2697660235395320479 ~1997
2697688195395376399 ~1997
2697707515395415039 ~1997
2697828115395656239 ~1997
2697945898147796587911 ~2002
2697969595395939199 ~1997
2698051315396102639 ~1997
2698152235396304479 ~1997
2698219915396439839 ~1997
2698285435396570879 ~1997
Exponent Prime Factor Digits Year
2698314612104685395911 ~2001
269833397215866717710 ~1998
269848253161908951910 ~1998
269852641161911584710 ~1998
2698538515397077039 ~1997
269858467269858467110 ~1999
2698632595397265199 ~1997
269866097215892877710 ~1998
2698705915397411839 ~1997
2698709635397419279 ~1997
269873129215898503310 ~1998
269874193647698063310 ~1999
2698945435397890879 ~1997
269898427269898427110 ~1999
2698993915397987839 ~1997
269904317161942590310 ~1998
2699086795398173599 ~1997
2699118715398237439 ~1997
2699277715398555439 ~1997
2699340235398680479 ~1997
269938829377914360710 ~1999
2699444035398888079 ~1997
2699463595398927199 ~1997
269946707215957365710 ~1998
2699577835399155679 ~1997
Exponent Prime Factor Digits Year
2699614315399228639 ~1997
2699635915399271839 ~1997
269971727215977381710 ~1998
269973113161983867910 ~1998
2699761915399523839 ~1997
2699814835399629679 ~1997
269983873161990323910 ~1998
269984899917948656710 ~2000
269990653431985044910 ~1999
2699940715399881439 ~1997
2699940835399881679 ~1997
2700062635400125279 ~1997
2700069835400139679 ~1997
270010999270010999110 ~1999
270019751216015800910 ~1998
270020081162012048710 ~1998
2700255595400511199 ~1997
270030359216024287310 ~1998
2700376435400752879 ~1997
2700377395400754799 ~1997
270038287486068916710 ~1999
270047993162028795910 ~1998
270052207432083531310 ~1999
2700561835401123679 ~1997
2700620995401241999 ~1997
Exponent Prime Factor Digits Year
2700683395401366799 ~1997
270068861162041316710 ~1998
2700705715401411439 ~1997
2700728395401456799 ~1997
2700752035401504079 ~1997
2700785635401571279 ~1997
2700877315401754639 ~1997
2700899035401798079 ~1997
270095297162057178310 ~1998
2700972595401945199 ~1997
270099629216079703310 ~1998
2701021915402043839 ~1997
270108401216086720910 ~1998
2701118515402237039 ~1997
2701122115402244239 ~1997
2701204195402408399 ~1997
2701278595402557199 ~1997
2701350595402701199 ~1997
2701423915402847839 ~1997
2701457035402914079 ~1997
2701640995403281999 ~1997
2701657435403314879 ~1997
2701666195403332399 ~1997
2701741435403482879 ~1997
2701796035403592079 ~1997
Home
5.157.210 digits
e-mail
25-11-02