Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3163473716326947439 ~1997
3163489196326978399 ~1997
3163511516327023039 ~1997
3163582796327165599 ~1997
3163598872341063163911 ~2001
3163623836327247679 ~1997
3163641236327282479 ~1997
316365653189819391910 ~1999
3163661396327322799 ~1997
3163702316327404639 ~1997
3163838036327676079 ~1997
3163997931771838840911 ~2001
316406537189843922310 ~1999
3164080196328160399 ~1997
3164150516328301039 ~1997
3164214716328429439 ~1997
3164228636328457279 ~1997
3164316116328632239 ~1997
316440697506305115310 ~2000
316443851253155080910 ~1999
3164630996329261999 ~1997
3164697116329394239 ~1997
3164706116329412239 ~1997
3164865596329731199 ~1997
316490171253192136910 ~1999
Exponent Prime Factor Digits Year
316492613189895567910 ~1999
3165111716330223439 ~1997
316512029253209623310 ~1999
3165238916330477839 ~1997
3165327911835890187911 ~2001
3165341396330682799 ~1997
3165359516330719039 ~1997
3165370796330741599 ~1997
3165419996330839999 ~1997
316548917189929350310 ~1999
3165510836331021679 ~1997
3165545996331091999 ~1997
3165554396331108799 ~1997
3165561116331122239 ~1997
3165690596331381199 ~1997
3165690836331381679 ~1997
3165735716331471439 ~1997
3165743391582871695111 ~2001
3165751916331503839 ~1997
3165842636331685279 ~1997
3166064036332128079 ~1997
3166088996332177999 ~1997
3166201796332403599 ~1997
316638479253310783310 ~1999
3166497836332995679 ~1997
Exponent Prime Factor Digits Year
3166514036333028079 ~1997
316655623316655623110 ~1999
3166577036333154079 ~1997
316658791316658791110 ~1999
3166598396333196799 ~1997
316663933189998359910 ~1999
316669571253335656910 ~1999
3166714911013348771311 ~2000
3166819796333639599 ~1997
316695061190017036710 ~1999
3167056436334112879 ~1997
3167104091266841636111 ~2001
316713101253370480910 ~1999
3167191916334383839 ~1997
316723769443413276710 ~1999
3167287196334574399 ~1997
316731347823501502310 ~2000
3167336396334672799 ~1997
316758227570164808710 ~2000
3167966636335933279 ~1997
3168063836336127679 ~1997
3168182516336365039 ~1997
3168203636336407279 ~1997
316821919760372605710 ~2000
3168366596336733199 ~1997
Exponent Prime Factor Digits Year
3168451316336902639 ~1997
3168496916336993839 ~1997
31685152933206040239312 ~2004
3168679316337358639 ~1997
3168847916337695839 ~1997
3168912596337825199 ~1997
3168968036337936079 ~1997
3169057916338115839 ~1997
3169161116338322239 ~1997
316931429253545143310 ~1999
3169477372472192348711 ~2001
3169482596338965199 ~1997
3169511636339023279 ~1997
3169576436339152879 ~1997
316972211253577768910 ~1999
3169756436339512879 ~1997
3169825316339650639 ~1997
316985957253588765710 ~1999
3169913516339827039 ~1997
3169938116339876239 ~1997
3170059436340118879 ~1997
3170143316340286639 ~1997
3170329796340659599 ~1997
3170349116340698239 ~1997
317036501253629200910 ~1999
Home
4.903.097 digits
e-mail
25-07-08