Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3149799116299598239 ~1997
314982937188989762310 ~1999
3149834396299668799 ~1997
3149969636299939279 ~1997
3149995436299990879 ~1997
3150113636300227279 ~1997
3150220796300441599 ~1997
3150322796300645599 ~1997
315032857189019714310 ~1999
315046661189027996710 ~1999
3150531596301063199 ~1997
3150729731260291892111 ~2001
3150786116301572239 ~1997
3150829316301658639 ~1997
3150832436301664879 ~1997
315084857252067885710 ~1999
3150910436301820879 ~1997
315093041189055824710 ~1999
3151142636302285279 ~1997
3151218716302437439 ~1997
315124501189074700710 ~1999
3151308116302616239 ~1997
315135497252108397710 ~1999
315138533189083119910 ~1999
3151413836302827679 ~1997
Exponent Prime Factor Digits Year
315141779252113423310 ~1999
3151793636303587279 ~1997
315187337189112402310 ~1999
3151982636303965279 ~1997
315212173189127303910 ~1999
3152164916304329839 ~1997
3152209436304418879 ~1997
3152236316304472639 ~1997
3152441036304882079 ~1997
3152441516304883039 ~1997
315253241252202592910 ~1999
3152605796305211599 ~1997
3152617316305234639 ~1997
3152660516305321039 ~1997
3152703116305406239 ~1997
315276173189165703910 ~1999
3153118796306237599 ~1997
3153471716306943439 ~1997
3153527996307055999 ~1997
3153528836307057679 ~1997
315356551315356551110 ~1999
3153764996307529999 ~1997
315391247252312997710 ~1999
3154032236308064479 ~1997
315405283315405283110 ~1999
Exponent Prime Factor Digits Year
3154082516308165039 ~1997
3154171916308343839 ~1997
315420527567756948710 ~2000
3154226996308453999 ~1997
3154261796308523599 ~1997
3154276436308552879 ~1997
3154442636308885279 ~1997
3154451996308903999 ~1997
3154467836308935679 ~1997
315453629252362903310 ~1999
3154616516309233039 ~1997
3154726916309453839 ~1997
315473813757137151310 ~2000
3154796636309593279 ~1997
3154804916309609839 ~1997
3154880516309761039 ~1997
3154888796309777599 ~1997
3154895996309791999 ~1997
3154925636309851279 ~1997
315496513189297907910 ~1999
315505997189303598310 ~1999
3155062916310125839 ~1997
315512237757229368910 ~2000
3155255036310510079 ~1997
3155354396310708799 ~1997
Exponent Prime Factor Digits Year
315543797441761315910 ~1999
3155485316310970639 ~1997
3155489636310979279 ~1997
3155522996311045999 ~1997
3155590436311180879 ~1997
3155674436311348879 ~1997
3155703836311407679 ~1997
3155858996311717999 ~1997
3155873996311747999 ~1997
3155915996311831999 ~1997
3155948036311896079 ~1997
3156036116312072239 ~1997
3156121196312242399 ~1997
3156147236312294479 ~1997
3156170771262468308111 ~2001
3156231116312462239 ~1997
3156276716312553439 ~1997
3156284036312568079 ~1997
3156386636312773279 ~1997
315643817189386290310 ~1999
3156633716313267439 ~1997
3156659516313319039 ~1997
315687137189412282310 ~1999
315687661189412596710 ~1999
3157039196314078399 ~1997
Home
4.903.097 digits
e-mail
25-07-08