Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3082974716165949439 ~1997
308323957739977496910 ~2000
3083259116166518239 ~1997
3083461674255177104711 ~2002
3083490116166980239 ~1997
308359067246687253710 ~1999
3083707916167415839 ~1997
3083812316167624639 ~1997
308381741246705392910 ~1999
3083883712035363248711 ~2001
3083908916167817839 ~1997
3083914916167829839 ~1997
3083926916167853839 ~1997
308404757246723805710 ~1999
3084058196168116399 ~1997
3084080996168161999 ~1997
308413151246730520910 ~1999
3084169316168338639 ~1997
3084182636168365279 ~1997
308418457493469531310 ~2000
3084289796168579599 ~1997
308434409246747527310 ~1999
3084352436168704879 ~1997
308437733185062639910 ~1998
3084394796168789599 ~1997
Exponent Prime Factor Digits Year
308446301246757040910 ~1999
308451841493522945710 ~2000
3084688436169376879 ~1997
308474839555254710310 ~2000
3084751436169502879 ~1997
3084766316169532639 ~1997
3084794396169588799 ~1997
3084829316169658639 ~1997
3084860271727521751311 ~2001
3084912596169825199 ~1997
3084969596169939199 ~1997
308500601246800480910 ~1999
308505293185103175910 ~1998
3085141311480867828911 ~2001
308518517185111110310 ~1998
3085215116170430239 ~1997
3085267196170534399 ~1997
3085269471542634735111 ~2001
3085369196170738399 ~1997
308552221185131332710 ~1998
3085710236171420479 ~1997
3085825316171650639 ~1997
308590937185154562310 ~1998
308607401185164440710 ~1998
3086103116172206239 ~1997
Exponent Prime Factor Digits Year
3086201996172403999 ~1997
3086614916173229839 ~1997
3086727836173455679 ~1997
308674721246939776910 ~1999
308679577740830984910 ~2000
3086803316173606639 ~1997
3086821316173642639 ~1997
3086859596173719199 ~1997
3086893196173786399 ~1997
3087212516174425039 ~1997
3087338396174676799 ~1997
3087394436174788879 ~1997
308739593432235430310 ~1999
308741387246993109710 ~1999
3087468116174936239 ~1997
308749061246999248910 ~1999
308754613185252767910 ~1998
308754709679260359910 ~2000
308787839247030271310 ~1999
3087928316175856639 ~1997
3087981116175962239 ~1997
308802653185281591910 ~1998
3088064516176129039 ~1997
3088094636176189279 ~1997
3088133636176267279 ~1997
Exponent Prime Factor Digits Year
3088253396176506799 ~1997
3088257716176515439 ~1997
3088318196176636399 ~1997
3088350716176701439 ~1997
3088542116177084239 ~1997
3088620236177240479 ~1997
3088623116177246239 ~1997
3088699196177398399 ~1997
3088703516177407039 ~1997
3088732196177464399 ~1997
3088758236177516479 ~1997
3088824716177649439 ~1997
3088864196177728399 ~1997
3088919036177838079 ~1997
3088919595004049735911 ~2002
3088956836177913679 ~1997
308899291308899291110 ~1999
3089253596178507199 ~1997
3089368196178736399 ~1997
3089456036178912079 ~1997
3089462996178925999 ~1997
3089472116178944239 ~1997
3089550716179101439 ~1997
3089616192533485275911 ~2001
308979817185387890310 ~1998
Home
4.903.097 digits
e-mail
25-07-08