Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3069246596138493199 ~1997
3069279836138559679 ~1997
306930433184158259910 ~1998
306930973491089556910 ~1999
3069333836138667679 ~1997
3069427916138855839 ~1997
3069589796139179599 ~1997
3069674036139348079 ~1997
306967597184180558310 ~1998
3069701516139403039 ~1997
3069770396139540799 ~1997
3069778436139556879 ~1997
3069828836139657679 ~1997
3069860632026108015911 ~2001
306994861184196916710 ~1998
307000303307000303110 ~1999
3070087316140174639 ~1997
3070103396140206799 ~1997
3070142996140285999 ~1997
3070345316140690639 ~1997
3070359596140719199 ~1997
3070377236140754479 ~1997
3070416716140833439 ~1997
3070422716140845439 ~1997
307054093184232455910 ~1998
Exponent Prime Factor Digits Year
3070546916141093839 ~1997
3070559396141118799 ~1997
307078301184246980710 ~1998
307088623491341796910 ~1999
3070956836141913679 ~1997
3070963436141926879 ~1997
3070964516141929039 ~1997
3071155796142311599 ~1997
3071221811474186468911 ~2001
3071248796142497599 ~1997
307127813429978938310 ~1999
3071378996142757999 ~1997
3071398796142797599 ~1997
3071501639398794987911 ~2003
307155689430017964710 ~1999
307160761184296456710 ~1998
3071638916143277839 ~1997
3071641316143282639 ~1997
307164457491463131310 ~1999
307179617430051463910 ~1999
3071798636143597279 ~1997
3071873516143747039 ~1997
3071979836143959679 ~1997
3072001196144002399 ~1997
307205999552970798310 ~2000
Exponent Prime Factor Digits Year
307208731307208731110 ~1999
3072093236144186479 ~1997
3072331916144663839 ~1997
3072368516144737039 ~1997
3072407996144815999 ~1997
3072542036145084079 ~1997
3072671396145342799 ~1997
3072825116145650239 ~1997
3072907796145815599 ~1997
3073085396146170799 ~1997
3073182116146364239 ~1997
3073312436146624879 ~1997
3073404596146809199 ~1997
307342547245874037710 ~1999
3073512236147024479 ~1997
3073522931413820547911 ~2001
3073719836147439679 ~1997
3073758236147516479 ~1997
3073827116147654239 ~1997
3073908596147817199 ~1997
307391299307391299110 ~1999
307397683491836292910 ~1999
3074072396148144799 ~1997
3074192636148385279 ~1997
307427741184456644710 ~1998
Exponent Prime Factor Digits Year
3074278316148556639 ~1997
307439633184463779910 ~1998
307446941184468164710 ~1998
3074493716148987439 ~1997
3074547116149094239 ~1997
3074601716149203439 ~1997
307464389245971511310 ~1999
3074647916149295839 ~1997
307469777184481866310 ~1998
3074698436149396879 ~1997
3074744396149488799 ~1997
3074786636149573279 ~1997
3074850116149700239 ~1997
3075025436150050879 ~1997
3075122516150245039 ~1997
307513001184507800710 ~1998
3075206636150413279 ~1997
3075253916150507839 ~1997
307557101184534260710 ~1998
307558733430582226310 ~1999
3075819716151639439 ~1997
3075873596151747199 ~1997
307603651307603651110 ~1999
3076105316152210639 ~1997
3076206716152413439 ~1997
Home
4.903.097 digits
e-mail
25-07-08