Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2915092435830184879 ~1997
291521231233216984910 ~1999
2915273995830547999 ~1997
291534277174920566310 ~1998
2915421595830843199 ~1997
2915456515830913039 ~1997
291548549408167968710 ~1999
2915504635831009279 ~1997
291552143699725143310 ~2000
291557051233245640910 ~1999
2915676235831352479 ~1997
291573847699777232910 ~2000
2915757835831515679 ~1997
2915822995831645999 ~1997
2915852635831705279 ~1997
2916012595832025199 ~1997
2916112795832225599 ~1997
2916181915832363839 ~1997
2916224811108165427911 ~2000
2916310795832621599 ~1997
2916481795832963599 ~1997
291653057174991834310 ~1998
2916570595833141199 ~1997
291664501174998700710 ~1998
291677801175006680710 ~1998
Exponent Prime Factor Digits Year
2916887515833775039 ~1997
2916926995833853999 ~1997
2917007515834015039 ~1997
2917082995834165999 ~1997
2917089715834179439 ~1997
2917193395834386799 ~1997
2917419173734296537711 ~2002
2917421035834842079 ~1997
2917576435835152879 ~1997
2917585435835170879 ~1997
2917742691575581052711 ~2001
2917823035835646079 ~1997
291783077175069846310 ~1998
291789761233431808910 ~1999
291791833175075099910 ~1998
2917919995835839999 ~1997
2917938715835877439 ~1997
291820541233456432910 ~1999
2918210635836421279 ~1997
2918221435836442879 ~1997
2918258995836517999 ~1997
2918555635837111279 ~1997
2918582395837164799 ~1997
2918662795837325599 ~1997
2918759395837518799 ~1997
Exponent Prime Factor Digits Year
2918807035837614079 ~1997
291883331233506664910 ~1999
2918845315837690639 ~1997
2918848435837696879 ~1997
2918897395837794799 ~1997
2918910311401076948911 ~2000
291891151291891151110 ~1999
2919047515838095039 ~1997
291915599700597437710 ~2000
2919167995838335999 ~1997
2919178315838356639 ~1997
291920561233536448910 ~1999
2919261115838522239 ~1997
2919374635838749279 ~1997
2919468835838937679 ~1997
2919525715839051439 ~1997
2919564595839129199 ~1997
291960353875881059110 ~2000
2919606715839213439 ~1997
2919630715839261439 ~1997
291964747992680139910 ~2000
291975193175185115910 ~1998
291986161175191696710 ~1998
291986957233589565710 ~1999
2919994435839988879 ~1997
Exponent Prime Factor Digits Year
2920002235840004479 ~1997
2920036435840072879 ~1997
2920075915840151839 ~1997
2920135915840271839 ~1997
2920140715840281439 ~1997
292014179233611343310 ~1999
292019099934461116910 ~2000
292037147233629717710 ~1999
292042193175225315910 ~1998
292043321233634656910 ~1999
2920461235840922479 ~1997
2920473835840947679 ~1997
2920492991401836635311 ~2000
292049657408869519910 ~1999
2920534315841068639 ~1997
2920630915841261839 ~1997
2920743115841486239 ~1997
292075871233660696910 ~1999
2920768915841537839 ~1997
292080743700993783310 ~2000
2920821235841642479 ~1997
292084693701003263310 ~2000
2920847035841694079 ~1997
2920850635841701279 ~1997
2920873315841746639 ~1997
Home
4.724.182 digits
e-mail
25-04-13