Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
272317471435707953710 ~1999
2723189395446378799 ~1997
2723300995446601999 ~1997
2723329435446658879 ~1997
272341387272341387110 ~1999
2723460715446921439 ~1997
2723486635446973279 ~1997
2723504995447009999 ~1997
272353457163412074310 ~1998
2723542795447085599 ~1997
2723631835447263679 ~1997
2723734435447468879 ~1997
272389693599257324710 ~1999
272393773653745055310 ~2000
2724091915448183839 ~1997
2724106795448213599 ~1997
272433173163459903910 ~1998
272458073163474843910 ~1998
2724719995449439999 ~1997
2724770635449541279 ~1997
2724803035449606079 ~1997
2724856795449713599 ~1997
272490271272490271110 ~1999
2724945115449890239 ~1997
2724960115449920239 ~1997
Exponent Prime Factor Digits Year
2724996115449992239 ~1997
272500721218000576910 ~1998
2725059835450119679 ~1997
272513951490525111910 ~1999
2725183315450366639 ~1997
2725231435450462879 ~1997
2725301035450602079 ~1997
2725332595450665199 ~1997
2725355892561834536711 ~2001
2725559035451118079 ~1997
2725668835451337679 ~1997
2725700995451401999 ~1997
2725881595451763199 ~1997
2725888195451776399 ~1997
2725907515451815039 ~1997
2725929593107559732711 ~2001
272612023272612023110 ~1999
272614753163568851910 ~1998
2726204331962867117711 ~2001
272621171218096936910 ~1998
272629739654311373710 ~2000
2726356315452712639 ~1997
272635841163581504710 ~1998
2726379715452759439 ~1997
2726500435453000879 ~1997
Exponent Prime Factor Digits Year
2726577835453155679 ~1997
272658761163595256710 ~1998
2726597635453195279 ~1997
2726642995453285999 ~1997
2726726635453453279 ~1997
2726833435453666879 ~1997
272684443272684443110 ~1999
272693717163616230310 ~1998
2727052435454104879 ~1997
2727108715454217439 ~1997
272715181163629108710 ~1998
2727316391309111867311 ~2000
2727361795454723599 ~1997
2727374635454749279 ~1997
2727387835454775679 ~1997
272760547272760547110 ~1999
2727621835455243679 ~1997
2727654835455309679 ~1997
2727714595455429199 ~1997
272776337381886871910 ~1999
272777137163666282310 ~1998
272778007272778007110 ~1999
2727830395455660799 ~1997
2728028515456057039 ~1997
2728048795456097599 ~1997
Exponent Prime Factor Digits Year
2728105915456211839 ~1997
2728150795456301599 ~1997
2728219435456438879 ~1997
272822107272822107110 ~1999
2728456915456913839 ~1997
2728510315457020639 ~1997
2728595995457191999 ~1997
272872021163723212710 ~1998
272884211218307368910 ~1998
2728850515457701039 ~1997
2728870315457740639 ~1997
272908511218326808910 ~1998
2729118115458236239 ~1997
272912363709572143910 ~2000
2729262595458525199 ~1997
272929681163757808710 ~1998
272945093818835279110 ~2000
2729458315458916639 ~1997
2729470915458941839 ~1997
272954257163772554310 ~1998
2729559715459119439 ~1997
2729594995459189999 ~1997
272960453163776271910 ~1998
2729624515459249039 ~1997
2729639035459278079 ~1997
Home
4.739.325 digits
e-mail
25-04-20