Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
271145921162687552710 ~1998
2711477635422955279 ~1997
271151401162690840710 ~1998
271152571488074627910 ~1999
271155281216924224910 ~1998
2711568835423137679 ~1997
2711608195423216399 ~1997
2711614315423228639 ~1997
271161481162696888710 ~1998
2711698915423397839 ~1997
271182391488128303910 ~1999
271194701216955760910 ~1998
2712030715424061439 ~1997
2712089995424179999 ~1997
2712115795424231599 ~1997
271211821433938913710 ~1999
271211959271211959110 ~1999
2712145435424290879 ~1997
2712163315424326639 ~1997
2712201715424403439 ~1997
271222361216977888910 ~1998
2712226315424452639 ~1997
271245809216996647310 ~1998
271266581162759948710 ~1998
2712837835425675679 ~1997
Exponent Prime Factor Digits Year
271284311217027448910 ~1998
2712860035425720079 ~1997
271290421162774252710 ~1998
2712949315425898639 ~1997
271302719217042175310 ~1998
271303861162782316710 ~1998
271306171271306171110 ~1999
2713120915426241839 ~1997
2713220395426440799 ~1997
271324457162794674310 ~1998
271330181217064144910 ~1998
2713420315426840639 ~1997
2713451035426902079 ~1997
2713540915427081839 ~1997
271356697162814018310 ~1998
2713600915427201839 ~1997
2713610395427220799 ~1997
271363031488453455910 ~1999
2713649035427298079 ~1997
271366913162820147910 ~1998
2713674835427349679 ~1997
271367909379915072710 ~1999
2713770595427541199 ~1997
2713788235427576479 ~1997
2713838035427676079 ~1997
Exponent Prime Factor Digits Year
2713970995427941999 ~1997
271403221162841932710 ~1998
2714116915428233839 ~1997
2714149315428298639 ~1997
2714165035428330079 ~1997
2714303035428606079 ~1997
271445099217156079310 ~1998
271449313434318900910 ~1999
271459453162875671910 ~1998
2714815315429630639 ~1997
271482461162889476710 ~1998
2715024595430049199 ~1997
2715095995430191999 ~1997
271519657162911794310 ~1998
271522949217218359310 ~1998
271524641162914784710 ~1998
2715303235430606479 ~1997
2715433795430867599 ~1997
2715434035430868079 ~1997
271546477162927886310 ~1998
2715471235430942479 ~1997
2715488995430977999 ~1997
271550701434481121710 ~1999
2715522235431044479 ~1997
2715687494562354983311 ~2002
Exponent Prime Factor Digits Year
2715737515431475039 ~1997
2715757195431514399 ~1997
2715901315431802639 ~1997
2715908995431817999 ~1997
2716094635432189279 ~1997
2716104595432209199 ~1997
2716181995432363999 ~1997
2716326115432652239 ~1997
2716365835432731679 ~1997
2716461595432923199 ~1997
2716630795433261599 ~1997
271663751488994751910 ~1999
2716734595433469199 ~1997
271704787271704787110 ~1999
271706777163024066310 ~1998
271710497380394695910 ~1999
2717106235434212479 ~1997
2717112835434225679 ~1997
2717195995434391999 ~1997
2717217595434435199 ~1997
2717248915434497839 ~1997
271728797217383037710 ~1998
271728943271728943110 ~1999
2717316115434632239 ~1997
2717345635434691279 ~1997
Home
4.739.325 digits
e-mail
25-04-20