Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1819006433638012879 ~1996
1819024433638048879 ~1996
181905541109143324710 ~1997
181906141109143684710 ~1997
181912723181912723110 ~1997
1819134113638268239 ~1996
181915213109149127910 ~1997
181923697109154218310 ~1997
181924619327464314310 ~1998
1819333433638666879 ~1996
1819340993638681999 ~1996
181935557691355116710 ~1999
1819362833638725679 ~1996
1819363793638727599 ~1996
181941281145553024910 ~1997
181953053109171831910 ~1997
1819569593639139199 ~1996
181960459727841836110 ~1999
1819634033639268079 ~1996
181965653109179391910 ~1997
1819656593639313199 ~1996
1819720193639440399 ~1996
1819742033639484079 ~1996
1819745633639491279 ~1996
181976429254767000710 ~1998
Exponent Prime Factor Digits Year
1819788833639577679 ~1996
1819811993639623999 ~1996
181981831764323690310 ~1999
1819820513639641039 ~1996
1819880393639760799 ~1996
181988449545965347110 ~1998
1820010233640020479 ~1996
1820020913640041839 ~1996
182005121109203072710 ~1997
1820114513640229039 ~1996
1820148833640297679 ~1996
182017201546051603110 ~1998
182019917109211950310 ~1997
1820210513640421039 ~1996
1820217833640435679 ~1996
182021857109213114310 ~1997
1820270633640541279 ~1996
1820395313640790639 ~1996
1820422793640845599 ~1996
182047709582552668910 ~1998
1820489393640978799 ~1996
1820560793641121599 ~1996
1820561033641122079 ~1996
182059169145647335310 ~1997
1820595233641190479 ~1996
Exponent Prime Factor Digits Year
182061151327710071910 ~1998
1820626193641252399 ~1996
182063753109238251910 ~1997
182063807145651045710 ~1997
1820726993641453999 ~1996
182073161691878011910 ~1999
182078027145662421710 ~1997
18208051111398239988712 ~2002
182083261109249956710 ~1997
1820913593641827199 ~1996
182098487145678789710 ~1997
182099927145679941710 ~1997
1821017633642035279 ~1996
1821020033642040079 ~1996
182104597109262758310 ~1997
1821067193642134399 ~1996
1821074633642149279 ~1996
1821093593642187199 ~1996
1821142793642285599 ~1996
1821187872185425444111 ~2000
1821218393642436799 ~1996
182125609400676339910 ~1998
1821272993642545999 ~1996
1821284513642569039 ~1996
1821399833642799679 ~1996
Exponent Prime Factor Digits Year
1821501833643003679 ~1996
182150401109290240710 ~1997
1821594233643188479 ~1996
182181991182181991110 ~1997
182188537109313122310 ~1997
1821903113643806239 ~1996
182193251145754600910 ~1997
182194459182194459110 ~1997
1822001033644002079 ~1996
1822018913644037839 ~1996
182203097109321858310 ~1997
1822032113644064239 ~1996
182207021109324212710 ~1997
1822140233644280479 ~1996
1822212113644424239 ~1996
1822218113644436239 ~1996
182226259182226259110 ~1997
1822277633644555279 ~1996
182235433109341259910 ~1997
182236757109342054310 ~1997
1822387793644775599 ~1996
1822398593644797199 ~1996
182249281109349568710 ~1997
1822495193644990399 ~1996
182250449145800359310 ~1997
Home
5.157.210 digits
e-mail
25-11-02