Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2575748515151497039 ~1997
2575755115151510239 ~1997
257575991206060792910 ~1998
2575781515151563039 ~1997
2575935595151871199 ~1997
2576069395152138799 ~1997
2576091291391089296711 ~2000
257613617154568170310 ~1998
2576155915152311839 ~1997
2576208595152417199 ~1997
2576208715152417439 ~1997
2576238235152476479 ~1997
2576242315152484639 ~1997
2576400595152801199 ~1997
2576464915152929839 ~1997
2576471995152943999 ~1997
2576554795153109599 ~1997
257660369360724516710 ~1999
2576735515153471039 ~1997
2576765635153531279 ~1997
2576768995153537999 ~1997
257699681206159744910 ~1998
257700371206160296910 ~1998
2577026635154053279 ~1997
2577073795154147599 ~1997
Exponent Prime Factor Digits Year
2577160315154320639 ~1997
2577396235154792479 ~1997
257740207412384331310 ~1999
2577443515154887039 ~1997
2577452635154905279 ~1997
2577483115154966239 ~1997
257749673154649803910 ~1998
2577518395155036799 ~1997
2577552595155105199 ~1997
2577594835155189679 ~1997
2577607315155214639 ~1997
2577611395155222799 ~1997
2577647532629200480711 ~2001
2577685795155371599 ~1997
257786981154672188710 ~1998
257793841154676304710 ~1998
2578028995156057999 ~1997
257803831257803831110 ~1998
2578115635156231279 ~1997
2578129795156259599 ~1997
2578206835156413679 ~1997
2578313035156626079 ~1997
257834881154700928710 ~1998
257840669773522007110 ~2000
257848453154709071910 ~1998
Exponent Prime Factor Digits Year
2578496395156992799 ~1997
2578656235157312479 ~1997
2578679035157358079 ~1997
2578690915157381839 ~1997
257874527206299621710 ~1998
2578854835157709679 ~1997
2578891435157782879 ~1997
257892697154735618310 ~1998
2579012515158025039 ~1997
2579083315158166639 ~1997
2579133715158267439 ~1997
2579287915158575839 ~1997
2579358715158717439 ~1997
2579457115158914239 ~1997
2579514835159029679 ~1997
2579538595159077199 ~1997
2579614435159228879 ~1997
2579739835159479679 ~1997
2579791915159583839 ~1997
257983513567563728710 ~1999
257988713361184198310 ~1999
2579940835159881679 ~1997
2580038995160077999 ~1997
2580071035160142079 ~1997
2580075115160150239 ~1997
Exponent Prime Factor Digits Year
258008797154805278310 ~1998
2580098871238447457711 ~2000
2580155035160310079 ~1997
2580200231032080092111 ~2000
2580216115160432239 ~1997
258021611206417288910
2580218395160436799 ~1997
258027113361237958310 ~1999
2580271315160542639 ~1997
258029173154817503910 ~1998
258042077154825246310 ~1998
258042413154825447910 ~1998
258042943258042943110 ~1998
2580441835160883679 ~1997
258058433361281806310 ~1999
2580597835161195679 ~1997
2580627235161254479 ~1997
2580647995161295999 ~1997
2580804115161608239 ~1997
258090643258090643110 ~1998
2580928195161856399 ~1997
258093299206474639310 ~1998
258100877154860526310 ~1998
2581015795162031599 ~1997
258110719464599294310 ~1999
Home
4.739.325 digits
e-mail
25-04-20