Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
259368959207495167310 ~1998
2593735915187471839 ~1997
2593783315187566639 ~1997
2593799035187598079 ~1997
2593824115187648239 ~1997
2593830115187660239 ~1997
2593849915187699839 ~1997
2593936195187872399 ~1997
2593939435187878879 ~1997
259403917155642350310 ~1998
2594117035188234079 ~1997
2594147391297073695111 ~2000
2594150035188300079 ~1997
259418519207534815310 ~1998
2594240515188481039 ~1997
259426991674510176710 ~1999
259431197778293591110 ~2000
259431527207545221710 ~1998
2594350315188700639 ~1997
2594352715188705439 ~1997
259437637155662582310 ~1998
259448821415118113710 ~1999
259457189363240064710 ~1999
2594581494722138311911 ~2002
259461641155676984710 ~1998
Exponent Prime Factor Digits Year
259462337207569869710 ~1998
2594633271245423969711 ~2000
2594674795189349599 ~1997
2594775835189551679 ~1997
2594785915189571839 ~1997
2594787595189575199 ~1997
2594789515189579039 ~1997
259479091259479091110 ~1998
2594886115189772239 ~1997
2594898235189796479 ~1997
2594925115189850239 ~1997
2595034795190069599 ~1997
259508239882328012710 ~2000
2595084235190168479 ~1997
259526537155715922310 ~1998
2595286795190573599 ~1997
2595505195191010399 ~1997
259552193155731315910 ~1998
2595547315191094639 ~1997
259561121207648896910 ~1998
2595677515191355039 ~1997
2595748915191497839 ~1997
2595795595191591199 ~1997
259600267259600267110 ~1998
2596060195192120399 ~1997
Exponent Prime Factor Digits Year
2596183435192366879 ~1997
2596205635192411279 ~1997
2596274995192549999 ~1997
2596393435192786879 ~1997
259641029207712823310 ~1998
259663007207730405710 ~1998
2596694395193388799 ~1997
2596707835193415679 ~1997
2596785115193570239 ~1997
2596799995193599999 ~1997
2596803595193607199 ~1997
259682399207745919310 ~1998
2596853995193707999 ~1997
2596861915193723839 ~1997
259689377155813626310 ~1998
2596983115193966239 ~1997
2596986115193972239 ~1997
2596996915193993839 ~1997
2597104435194208879 ~1997
2597233195194466399 ~1997
2597255035194510079 ~1997
2597367595194735199 ~1997
2597407795194815599 ~1997
259742621155845572710 ~1998
2597442115194884239 ~1997
Exponent Prime Factor Digits Year
2597474471714333150311 ~2000
259747973155848783910 ~1998
2597512915195025839 ~1997
2597640835195281679 ~1997
2597679835195359679 ~1997
2597730235195460479 ~1997
259774643675414071910 ~1999
2597776915195553839 ~1997
2597799115195598239 ~1997
2597869915195739839 ~1997
259787993155872795910 ~1998
2597914315195828639 ~1997
2597968435195936879 ~1997
259801771259801771110 ~1998
2598062515196125039 ~1997
259813997155888398310 ~1998
2598187315196374639 ~1997
2598234715196469439 ~1997
259823857155894314310 ~1998
2598288835196577679 ~1997
2598406435196812879 ~1997
259843979207875183310 ~1998
259846313155907787910 ~1998
2598481915196963839 ~1997
2598572035197144079 ~1997
Home
4.724.182 digits
e-mail
25-04-13