Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2527351795054703599 ~1997
2527413115054826239 ~1997
252747073151648243910 ~1998
2527554115055108239 ~1997
2527612915055225839 ~1997
2527618195055236399 ~1997
2527673035055346079 ~1997
2527675195055350399 ~1997
252767777960517552710 ~2000
2527728235055456479 ~1997
252781561151668936710 ~1998
2527836835055673679 ~1997
2527853035055706079 ~1997
2527984315055968639 ~1997
252801377151680826310 ~1998
2528019115056038239 ~1997
2528050435056100879 ~1997
2528165414803514279111 ~2001
252817381151690428710 ~1998
2528281435056562879 ~1997
252828833151697299910 ~1998
2528297995056595999 ~1997
2528304715056609439 ~1997
2528360991061911615911 ~2000
2528452915056905839 ~1997
Exponent Prime Factor Digits Year
2528488315056976639 ~1997
2528577235057154479 ~1997
2528593195057186399 ~1997
252859553151715731910 ~1998
2528658595057317199 ~1997
2528665391062039463911 ~2000
252870313151722187910 ~1998
252872299252872299110 ~1998
2528738395057476799 ~1997
2528937835057875679 ~1997
2529113395058226799 ~1997
2529130795058261599 ~1997
2529297115058594239 ~1997
252937943657638651910 ~1999
2529400435058800879 ~1997
2529441235058882479 ~1997
252945257607068616910 ~1999
2529578515059157039 ~1997
2529688435059376879 ~1997
2529698635059397279 ~1997
2529806391062518683911 ~2000
2529905395059810799 ~1997
2530101715060203439 ~1997
2530111315060222639 ~1997
2530112995060225999 ~1997
Exponent Prime Factor Digits Year
2530118515060237039 ~1997
253018013151810807910 ~1998
253025257151815154310 ~1998
2530277395060554799 ~1997
2530279195060558399 ~1997
2530334635920983034311 ~2002
253040147202432117710 ~1998
2530512835061025679 ~1997
253051657151830994310 ~1998
2530540795061081599 ~1997
253055497151833298310 ~1998
253055521556722146310 ~1999
2530568035061136079 ~1997
253060021151836012710 ~1998
2530601635061203279 ~1997
253061261202449008910 ~1998
2530646395061292799 ~1997
2530656715061313439 ~1997
2530707115061414239 ~1997
253070977151842586310 ~1998
2530773715061547439 ~1997
2530799515061599039 ~1997
2530851595061703199 ~1997
2530867915061735839 ~1997
2531059915062119839 ~1997
Exponent Prime Factor Digits Year
2531067835062135679 ~1997
2531136835062273679 ~1997
2531189031265594515111 ~2000
2531255995062511999 ~1997
2531256235062512479 ~1997
2531258395062516799 ~1997
253127137151876282310 ~1998
2531315035062630079 ~1997
2531317315062634639 ~1997
253137713151882627910 ~1998
2531399635062799279 ~1997
2531442115062884239 ~1997
253145069354403096710 ~1999
2531487115062974239 ~1997
2531513035063026079 ~1997
253154641151892784710 ~1998
253157291202525832910 ~1998
253163137151897882310 ~1998
2531730835063461679 ~1997
253176817151906090310 ~1998
2532017035064034079 ~1997
2532047995064095999 ~1997
2532116395064232799 ~1997
253217441810295811310 ~2000
253249091202599272910 ~1998
Home
4.739.325 digits
e-mail
25-04-20