Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
176157901105694740710 ~1997
176162201528486603110 ~1998
1761625793523251599 ~1995
176167877528503631110 ~1998
1761692993523385999 ~1995
1761695513523391039 ~1995
176170037140936029710 ~1997
1761768113523536239 ~1995
1761777593523555199 ~1995
176186939140949551310 ~1997
1761881633523763279 ~1995
176199307176199307110 ~1997
1762014233524028479 ~1995
176201897246682655910 ~1997
1762055393524110799 ~1995
176215451845834164910 ~1999
176216297105729778310 ~1997
1762219433524438879 ~1995
1762220033524440079 ~1995
1762228313524456639 ~1995
1762289633524579279 ~1995
1762306793524613599 ~1995
1762316633524633279 ~1995
1762346513524693039 ~1995
1762375913524751839 ~1995
Exponent Prime Factor Digits Year
176238187176238187110 ~1997
1762401593524803199 ~1995
1762437611973930123311 ~2000
176249653105749791910 ~1997
1762523393525046799 ~1995
1762525793525051599 ~1995
1762536593525073199 ~1995
1762708793525417599 ~1995
1762717313525434639 ~1995
1762752233525504479 ~1995
176277259317299066310 ~1998
1762798793525597599 ~1995
176280121105768072710 ~1997
1762820033525640079 ~1995
1762820633525641279 ~1995
1762828193525656399 ~1995
1762877633525755279 ~1995
176293393105776035910 ~1997
176298433105779059910 ~1997
1762987193525974399 ~1995
176301493387863284710 ~1998
1763068433526136879 ~1995
1763159393526318799 ~1995
1763210633526421279 ~1995
1763246513526493039 ~1995
Exponent Prime Factor Digits Year
1763306633526613279 ~1995
1763319713526639439 ~1995
176332907141066325710 ~1997
1763332913526665839 ~1995
1763355593526711199 ~1995
1763399393526798799 ~1995
1763425313526850639 ~1995
1763458913526917839 ~1995
176346161141076928910 ~1997
1763503793527007599 ~1995
1763508713527017439 ~1995
176355217105813130310 ~1997
1763569193527138399 ~1995
1763602671305065975911 ~1999
1763608193527216399 ~1995
1763694113527388239 ~1995
1763732513527465039 ~1995
176375327141100261710 ~1997
176385817282217307310 ~1998
1763890433527780879 ~1995
1763894633527789279 ~1995
1764002993528005999 ~1995
176402129141121703310 ~1997
176405167176405167110 ~1997
176406821141125456910 ~1997
Exponent Prime Factor Digits Year
1764134393528268799 ~1995
176414783564527305710 ~1998
1764166313528332639 ~1995
1764169313528338639 ~1995
1764211913528423839 ~1995
1764220913528441839 ~1995
176425961141140768910 ~1997
176429641105857784710 ~1997
1764323513528647039 ~1995
176435813247010138310 ~1997
1764359513528719039 ~1995
1764365633528731279 ~1995
1764366713528733439 ~1995
1764379313528758639 ~1995
1764451793528903599 ~1995
176446163741073884710 ~1999
176447867141158293710 ~1997
1764511793529023599 ~1995
1764519233529038479 ~1995
1764566993529133999 ~1995
1764612471729320220711 ~2000
176464513529393539110 ~1998
1764689513529379039 ~1995
1764699713529399439 ~1995
176470117105882070310 ~1997
Home
5.157.210 digits
e-mail
25-11-02