Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
246736799197389439310 ~1998
246738887197391109710 ~1998
2467417794934835599 ~1997
2467418514934837039 ~1997
2467449834934899679 ~1997
2467457034934914079 ~1997
2467461834934923679 ~1997
2467527114935054239 ~1997
2467528794935057599 ~1997
246755611246755611110 ~1998
2467584234935168479 ~1997
2467644714935289439 ~1997
246770327592248784910 ~1999
2467730634935461279 ~1997
246773167246773167110 ~1998
246776141148065684710 ~1998
246782381148069428710 ~1998
2467840914935681839 ~1997
246794617148076770310 ~1998
2467975434935950879 ~1997
2468225034936450079 ~1997
2468263194936526399 ~1997
2468325834936651679 ~1997
2468351394936702799 ~1997
2468481114936962239 ~1997
Exponent Prime Factor Digits Year
246848149543065927910 ~1999
2468507394937014799 ~1997
2468522514937045039 ~1997
2468622234937244479 ~1997
2468680914937361839 ~1997
2468758794937517599 ~1997
2468885994937771999 ~1997
246907841148144704710 ~1998
2469111834938223679 ~1997
2469119994938239999 ~1997
2469124434938248879 ~1997
246912473345677462310 ~1999
246921749197537399310 ~1998
2469223914938447839 ~1997
2469356514938713039 ~1997
2469367194938734399 ~1997
246940697197552557710 ~1998
2469438714938877439 ~1997
246947357148168414310 ~1998
246964229197571383310 ~1998
2469678114939356239 ~1997
246973973592737535310 ~1999
2469807114939614239 ~1997
246990053148194031910 ~1998
246998881148199328710 ~1998
Exponent Prime Factor Digits Year
2470070634940141279 ~1997
2470142034940284079 ~1997
2470146234940292479 ~1997
2470247634940495279 ~1997
2470383714940767439 ~1997
2470500594941001199 ~1997
2470519914941039839 ~1997
2470570914941141839 ~1997
2470602594941205199 ~1997
2470633914941267839 ~1997
2470654314941308639 ~1997
2470666434941332879 ~1997
2470670634941341279 ~1997
2470680714941361439 ~1997
247069423247069423110 ~1998
2470872594941745199 ~1997
247090351247090351110 ~1998
2470975314941950639 ~1997
247106513148263907910 ~1998
247108097345951335910 ~1999
2471107194942214399 ~1997
2471123634942247279 ~1997
2471202594942405199 ~1997
247128821197703056910 ~1998
2471332914942665839 ~1997
Exponent Prime Factor Digits Year
2471593314943186639 ~1997
247165063988660252110 ~2000
2471688714943377439 ~1997
2471730114943460239 ~1997
247181353395490164910 ~1999
247194253543827356710 ~1999
2471963634943927279 ~1997
2471973834943947679 ~1997
2471997234943994479 ~1997
2472050394944100799 ~1997
2472055314944110639 ~1997
247207777148324666310 ~1998
2472077994944155999 ~1997
2472112314944224639 ~1997
2472293994944587999 ~1997
2472341034944682079 ~1997
2472376434944752879 ~1997
2472398034944796079 ~1997
2472457314944914639 ~1997
2472516594945033199 ~1997
247251703247251703110 ~1998
247251841148351104710 ~1998
2472542691978034152111 ~2000
2472590634945181279 ~1997
247265717148359430310 ~1998
Home
4.739.325 digits
e-mail
25-04-20