Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2249383914498767839 ~1996
2249552394499104799 ~1996
224956681134974008710 ~1997
224964217359942747310 ~1998
2249658594499317199 ~1996
2249758434499516879 ~1996
224975843539942023310
2249771634499543279 ~1996
2249788434499576879 ~1996
2249795634499591279 ~1996
2249983794499967599 ~1996
225001099900004396110 ~1999
225005213135003127910 ~1997
225020219720064700910 ~1999
2250213234500426479 ~1996
2250224034500448079 ~1996
2250261114500522239 ~1996
225035957135021574310 ~1997
2250373914500747839 ~1996
225041977135025186310 ~1997
225044041135026424710 ~1997
2250444114500888239 ~1996
2250461634500923279 ~1996
2250535194501070399 ~1996
225054367225054367110 ~1998
Exponent Prime Factor Digits Year
2250611634501223279 ~1996
225068099180054479310 ~1998
225074459180059567310 ~1998
2250825234501650479 ~1996
2250868194501736399 ~1996
2250871434501742879 ~1996
2250898314501796639 ~1996
225090479180072383310 ~1998
2250908394501816799 ~1996
2251013394502026799 ~1996
225112567225112567110 ~1998
2251143594502287199 ~1996
225115057135069034310 ~1997
225121441135072864710 ~1997
225123413720394921710 ~1999
2251237194502474399 ~1996
225124853135074911910 ~1997
2251282194502564399 ~1996
2251298514502597039 ~1996
2251302714502605439 ~1996
225133663225133663110 ~1998
225134597135080758310 ~1997
2251407594502815199 ~1996
225159497135095698310 ~1997
225167009675501027110 ~1999
Exponent Prime Factor Digits Year
2251698234503396479 ~1996
2251802394503604799 ~1996
2251818714503637439 ~1996
2251829394503658799 ~1996
2251835034503670079 ~1996
2251885314503770639 ~1996
2251968594503937199 ~1996
2252000994504001999 ~1996
2252014914504029839 ~1996
2252094834504189679 ~1996
2252114634504229279 ~1996
2252115234504230479 ~1996
225214219540514125710 ~1999
2252226114504452239 ~1996
225235631180188504910 ~1998
2252529714505059439 ~1996
2252549994505099999 ~1996
225263999405475198310 ~1999
2252650638875443482311 ~2002
2252665794505331599 ~1996
2252735394505470799 ~1996
225274271180219416910 ~1998
225276551180221240910 ~1998
2252869914505739839 ~1996
225294481135176688710 ~1997
Exponent Prime Factor Digits Year
2252972394505944799 ~1996
225298487180238789710 ~1998
225298867225298867110 ~1998
225304889180243911310 ~1998
225305441180244352910 ~1998
2253092514506185039 ~1996
225314339180251471310 ~1998
225316739405570130310 ~1999
225320897135192538310 ~1997
2253245634506491279 ~1996
225333377135200026310 ~1997
2253336114506672239 ~1996
2253357114506714239 ~1996
2253370434506740879 ~1996
225343291225343291110 ~1998
2253456234506912479 ~1996
2253494514506989039 ~1996
2253530994507061999 ~1996
2253569034507138079 ~1996
225358073135214843910 ~1997
2253770514507541039 ~1996
2253813234507626479 ~1996
2253818394507636799 ~1996
2253848994507697999 ~1996
225384953135230971910 ~1997
Home
4.739.325 digits
e-mail
25-04-20