Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2197657794395315599 ~1996
2197686834395373679 ~1996
219769243351630788910 ~1998
2197702314395404639 ~1996
2197961634395923279 ~1996
2197994034395988079 ~1996
2197997634395995279 ~1996
219801277131880766310 ~1997
2198033514396067039 ~1996
2198096994396193999 ~1996
2198115834396231679 ~1996
219815657131889394310 ~1997
219816761131890056710 ~1997
219829013659487039110 ~1999
2198391172418230287111 ~2000
219845057131907034310 ~1997
219851699175881359310 ~1998
2198538114397076239 ~1996
219858109483687839910 ~1999
219861233307805726310 ~1998
2198659314397318639 ~1996
219868861131921316710 ~1997
219869297175895437710 ~1998
2198757594397515199 ~1996
219880337131928202310 ~1997
Exponent Prime Factor Digits Year
2198822514397645039 ~1996
2198842794397685599 ~1996
219886973307841762310 ~1998
219887237175909789710 ~1998
2198901234397802479 ~1996
219891509175913207310 ~1998
219893857527745256910 ~1999
219896167395813100710 ~1998
2198997834397995679 ~1996
219910363219910363110 ~1998
2199131034398262079 ~1996
219927163219927163110 ~1998
219927343219927343110 ~1998
2199294714398589439 ~1996
2199332994398665999 ~1996
2199359394398718799 ~1996
2199459594398919199 ~1996
2199469314398938639 ~1996
2199553314399106639 ~1996
219959027175967221710 ~1998
219984209703949468910 ~1999
219987961131992776710 ~1997
219991301131994780710 ~1997
2199959994399919999 ~1996
2199970314399940639 ~1996
Exponent Prime Factor Digits Year
2199976194399952399 ~1996
2200093194400186399 ~1996
2200229634400459279 ~1996
2200279194400558399 ~1996
2200289994400579999 ~1996
2200312914400625839 ~1996
220033013528079231310 ~1999
2200359834400719679 ~1996
2200464714400929439 ~1996
2200470114400940239 ~1996
2200525314401050639 ~1996
2200553514401107039 ~1996
2200560594401121199 ~1996
220060327220060327110 ~1998
2200618434401236879 ~1996
220062431704199779310 ~1999
220063037176050429710 ~1998
2200645434401290879 ~1996
2200668114401336239 ~1996
2200668711760534968111 ~2000
220068217132040930310 ~1997
2200718994401437999 ~1996
220072129528173109710 ~1999
2200726314401452639 ~1996
220077929308109100710 ~1998
Exponent Prime Factor Digits Year
2200850034401700079 ~1996
2200938594401877199 ~1996
2200980411364607854311 ~2000
2201130834402261679 ~1996
220122641176098112910 ~1998
2201276811893098056711 ~2000
2201384034402768079 ~1996
220139951176111960910 ~1998
2201408394402816799 ~1996
2201411394402822799 ~1996
2201441034402882079 ~1996
2201512314403024639 ~1996
220163677132098206310 ~1997
2201704914403409839 ~1996
2201777994403555999 ~1996
220182539704584124910 ~1999
2201828994403657999 ~1996
2201842914403685839 ~1996
2201848794403697599 ~1996
2201870394403740799 ~1996
2201915634403831279 ~1996
220195931176156744910 ~1998
220199179220199179110 ~1998
2202099114404198239 ~1996
220212467396382440710 ~1998
Home
4.739.325 digits
e-mail
25-04-20