Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
218773721131264232710 ~1997
2187793914375587839 ~1996
2187808194375616399 ~1996
2187828714375657439 ~1996
2187868914375737839 ~1996
2187896994375793999 ~1996
2187928914375857839 ~1996
2187942114375884239 ~1996
2188015194376030399 ~1996
2188036194376072399 ~1996
2188057314376114639 ~1996
2188081794376163599 ~1996
218813129525151509710 ~1999
218817887525162928910 ~1999
2188279434376558879 ~1996
2188296834376593679 ~1996
2188375434376750879 ~1996
218839337175071469710 ~1998
2188458834376917679 ~1996
2188537314377074639 ~1996
218861921175089536910 ~1998
218869243218869243110 ~1998
218873021131323812710 ~1997
2188774194377548399 ~1996
2188933794377867599 ~1996
Exponent Prime Factor Digits Year
2188934394377868799 ~1996
2188962114377924239 ~1996
218898181131338908710 ~1997
2189057514378115039 ~1996
218906921175125536910 ~1998
218908817175127053710 ~1998
2189092194378184399 ~1996
2189202834378405679 ~1996
2189312394378624799 ~1996
2189578914379157839 ~1996
218958407175166725710 ~1998
2189680314379360639 ~1996
2189755914379511839 ~1996
2189834634379669279 ~1996
2189908794379817599 ~1996
2189959434379918879 ~1996
2189959932102361532911 ~2000
2189962794379925599 ~1996
218997379218997379110 ~1998
2190051234380102479 ~1996
2190081234380162479 ~1996
2190117114380234239 ~1996
219013073131407843910 ~1997
219014023219014023110 ~1998
219029597131417758310 ~1997
Exponent Prime Factor Digits Year
2190349434380698879 ~1996
2190370794380741599 ~1996
219043679175234943310 ~1998
2190448794380897599 ~1996
219050771175240616910 ~1998
2190731394381462799 ~1996
2190755394381510799 ~1996
219089009525813621710 ~1999
2190938634381877279 ~1996
2190960714381921439 ~1996
2190966594381933199 ~1996
2191041834382083679 ~1996
219111463219111463110 ~1998
219113621131468172710 ~1997
219123833131474299910 ~1997
2191250514382501039 ~1996
2191303194382606399 ~1996
2191414794382829599 ~1996
219142657657427971110 ~1999
219143863219143863110 ~1998
219143921175315136910 ~1998
219146777131488066310 ~1997
2191564194383128399 ~1996
219158567175326853710 ~1998
219158837131495302310 ~1997
Exponent Prime Factor Digits Year
219159793131495875910 ~1997
2191661634383323279 ~1996
2191685034383370079 ~1996
2191822794383645599 ~1996
219199133306878786310 ~1998
2191998594383997199 ~1996
2192030514384061039 ~1996
2192045994384091999 ~1996
2192050434384100879 ~1996
2192061594384123199 ~1996
219212927175370341710 ~1998
2192265714384531439 ~1996
2192274834384549679 ~1996
2192327034384654079 ~1996
219235771219235771110 ~1998
219237167175389733710 ~1998
2192389794384779599 ~1996
2192427594384855199 ~1996
219245417306943583910 ~1998
2192458914384917839 ~1996
219247447394645404710 ~1998
2192520234385040479 ~1996
219258311394664959910 ~1998
219260521131556312710 ~1997
2192667114385334239 ~1996
Home
4.739.325 digits
e-mail
25-04-20