Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1820020913640041839 ~1996
182005121109203072710 ~1997
1820114513640229039 ~1996
1820148833640297679 ~1996
182017201546051603110 ~1998
182019917109211950310 ~1997
1820210513640421039 ~1996
1820217833640435679 ~1996
182021857109213114310 ~1997
1820270633640541279 ~1996
1820395313640790639 ~1996
1820422793640845599 ~1996
182047709582552668910 ~1998
1820489393640978799 ~1996
1820561033641122079 ~1996
182059169145647335310 ~1997
1820595233641190479 ~1996
182061151327710071910 ~1998
1820626193641252399 ~1996
182063807145651045710 ~1997
1820726993641453999 ~1996
182073161691878011910 ~1999
182078027145662421710 ~1997
18208051111398239988712 ~2002
1820913593641827199 ~1996
Exponent Prime Factor Digits Year
182098487145678789710 ~1997
182099927145679941710 ~1997
1821017633642035279 ~1996
1821020033642040079 ~1996
182104597109262758310 ~1997
1821067193642134399 ~1996
1821074633642149279 ~1996
1821093593642187199 ~1996
1821142793642285599 ~1996
1821187872185425444111 ~2000
1821218393642436799 ~1996
182125609400676339910 ~1998
1821272993642545999 ~1996
1821284513642569039 ~1996
1821399833642799679 ~1996
1821501833643003679 ~1996
182150401109290240710 ~1997
1821594233643188479 ~1996
182181991182181991110 ~1997
182188537109313122310 ~1997
1821903113643806239 ~1996
182193251145754600910 ~1997
182194459182194459110 ~1997
1822001033644002079 ~1996
1822018913644037839 ~1996
Exponent Prime Factor Digits Year
182203097109321858310 ~1997
182207021109324212710 ~1997
1822140233644280479 ~1996
1822212113644424239 ~1996
1822218113644436239 ~1996
182226259182226259110 ~1997
1822277633644555279 ~1996
182235433109341259910 ~1997
182236757109342054310 ~1997
1822387793644775599 ~1996
1822398593644797199 ~1996
182249281109349568710 ~1997
1822495193644990399 ~1996
182250449145800359310 ~1997
182250661109350396710 ~1997
1822514033645028079 ~1996
1822517393645034799 ~1996
1822521833645043679 ~1996
1822535633645071279 ~1996
182255873255158222310 ~1998
1822563593645127199 ~1996
182261701109357020710 ~1997
1822667513645335039 ~1996
1822717793645435599 ~1996
1822736993645473999 ~1996
Exponent Prime Factor Digits Year
1822749491713384520711 ~2000
182277371874931380910 ~1999
1822793513645587039 ~1996
1822798433645596879 ~1996
182280181109368108710 ~1997
1822846433645692879 ~1996
1822852671749938563311 ~2000
1822909313645818639 ~1996
1822920833645841679 ~1996
1823092433646184879 ~1996
182312681145850144910 ~1997
1823161193646322399 ~1996
1823174513646349039 ~1996
182320093291712148910 ~1998
182320357109392214310 ~1997
182323577109394146310 ~1997
1823278913646557839 ~1996
1823290131750358524911 ~2000
1823361833646723679 ~1996
1823367833646735679 ~1996
1823373833646747679 ~1996
1823396393646792799 ~1996
1823411513646823039 ~1996
1823479433646958879 ~1996
1823590433647180879 ~1996
Home
4.918.085 digits
e-mail
25-07-13